ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of mass-loss on the evolution and pre-supernova properties of red supergiants

238   0   0.0 ( 0 )
 نشر من قبل Georges Meynet
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The post main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate and the effect of a close companion. We study how the red supergiant lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor as well as the structure of the stars at that time change for various mass-loss rates during the red supergiant phase (RSG), and for two different initial rotation velocities. The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and therefore on the luminosity function of RSGs. At solar metallicity, the enhanced mass-loss rate models do produce significant changes on the populations of blue, yellow and red supergiants. When extended blue loops or blue ward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post RSG objects. These post RSG stars are predicted to show much smaller surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever, at the pre-supernova stage, the H-rich envelope contains more than about 5% of the initial mass, the star is a red supergiant, and whenever the H-rich envelope contains less than 1% of the total mass the star is a blue supergiant. For intermediate situations, intermediate colors/effective temperatures are obtained. Yellow progenitors for core collapse supernovae can be explained by the enhanced mass-loss rate models, while the red progenitors are better fitted by the standard mass-loss rate models.



قيم البحث

اقرأ أيضاً

The activity of massive stars approaching core-collapse can strongly affect the appearance of the star and its subsequent supernova. Late-phase convective nuclear burning generates waves that propagate toward the stellar surface, heating the envelope and potentially triggering mass loss. In this work, we improve on previous one-dimensional models by performing two-dimensional simulations of the pre-supernova mass ejection phase due wave heat deposition. Beginning with stellar evolutionary models of a 15 $M_{odot}$ red supergiant star during core O-burning, we treat the energy deposition rate and duration as model parameters and examine the mass-loss dependence and the pre-explosion morphology accordingly. Unlike one-dimensional models, density
Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 - 30msun the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolut ion, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new mdot prescription calibrated to RSGs with initial masses between 10 - 25msun, which unlike previous prescriptions does not over estimate mdot for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass-loss by recomputing the evolution of stars with masses 12-27msun with the new mdot-prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core-collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30msun to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.
We report mid- to far-infrared imaging and photomety from 7 to 37 microns with SOFIA/FORCAST and 2 micron adaptive optics imaging with LBTI/LMIRCam of a large sample of red supergiants (RSGs) in four Galactic clusters; RSGC1, RSGC2=Stephenson 2, RSGC 3, and NGC 7419. The red supergiants in these clusters cover their expected range in luminosity and initial mass from approximately 9 to more than 25 Solar masses. The population includes examples of very late-type RSGs such as MY Cep which may be near the end of the RSG stage, high mass losing maser sources, yellow hypergiants and post-RSG candidates. Many of the stars and almost all of the most luminous have spectral energy distributions (SEDs) with extended infrared excess radiation at the longest wavelengths. To best model their SEDs we use DUSTY with a variable radial density distribution function to estimate their mass loss rates. Our mass loss rate -- luminosity relation for 42 RSGs basically follows the classical de Jager curve, but at luminosities below 10^5 Solar luminosities we find a significant population of red supergiants with mass loss rate below the de Jager relation. At luminosities above 10^5 Solar luminosities there is a rapid transition to higher mass loss rates that approximates and overlaps the de Jager curve. We recommend that instead of using a linear relation or single curve, the empirical mass loss rate -- luminosity relation is better represented by a broad band. Interestingly, the transition to much higher mass loss rates at about 10^5 Lsun corresponds approximately to an initial mass of 18 --20 Msun which is close to the upper limit for RSGs becoming Type II SNe.
Mass loss is an important activity for red supergiants (RSGs) which can influence their evolution and final fate. Previous estimations of mass loss rates (MLRs) of RSGs exhibit significant dispersion due to the difference in method and the incomplete ness of sample. With the improved quality and depth of the surveys including the UKIRT/WFCAM observation in near infrared, LGGS and PS1 in optical, a rather complete sample of RSGs is identified in M31 and M33 according to their brightness and colors. For about 2000 objects in either galaxy from this ever largest sample, the MLR is derived by fitting the observational optical-to-mid infrared spectral energy distribution (SED) with the DUSTY code of a 1-D dust radiative transfer model. The average MLR of RSGs is found to be around $2.0times10^{-5}{text{M}_odot}/text{yr}$ with a gas-to-dust ratio of 100, which yields a total contribution to the interstellar dust by RSGs of about $1.1times10^{-3}{text{M}_odot}/text{yr}$ in M31 and $6.0 times10^{-4}{text{M}_odot}/text{yr}$ in M33, a non-negligible source in comparison with evolved low-mass stars. The MLRs are divided into three types by the dust properties, i.e. amorphous silicate, amorphous carbon and optically thin, and the relations of MLR with stellar parameters, infrared flux and colors are discussed and compared with previous works for the silicate and carbon dust group respectively.
108 - Ben Davies 2021
The rate at which mass is lost during the Red Supergiant evolutionary stage may strongly influence how the star appears. Though there have been many studies discussing how RSGs appear in the mid and far infrared (IR) as a function of their mass-loss rate, to date there have been no such investigations at optical and near-IR wavelengths. In a preliminary study we construct model atmospheres for RSGs which include a wind, and use these models to compute synthetic spectra from the optical to the mid-infrared. The inclusion of a wind has two important effects. Firstly, higher mass-loss rates result in stronger absorption in the TiO bands, causing the star to appear as a later spectral type despite its effective temperature remaining constant. This explains the observed relation between spectral type, evolutionary stage and mid-IR excess, as well as the mismatch between temperatures derived from the optical and infrared. Secondly, the wind mimics many observed characteristics of a `MOLsphere, potentially providing an explanation for the extended molecular zone inferred to exist around nearby RSGs. Thirdly, we show that wind fluctuations can explain the spectral variability of Betelgeuse during its recent dimming, without the need for dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا