ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of realistic red supergiant mass-loss on stellar evolution

93   0   0.0 ( 0 )
 نشر من قبل Emma Beasor Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 - 30msun the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new mdot prescription calibrated to RSGs with initial masses between 10 - 25msun, which unlike previous prescriptions does not over estimate mdot for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass-loss by recomputing the evolution of stars with masses 12-27msun with the new mdot-prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core-collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30msun to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.

قيم البحث

اقرأ أيضاً

The post main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate and the effect of a close companion. We study how the red super giant lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor as well as the structure of the stars at that time change for various mass-loss rates during the red supergiant phase (RSG), and for two different initial rotation velocities. The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and therefore on the luminosity function of RSGs. At solar metallicity, the enhanced mass-loss rate models do produce significant changes on the populations of blue, yellow and red supergiants. When extended blue loops or blue ward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post RSG objects. These post RSG stars are predicted to show much smaller surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever, at the pre-supernova stage, the H-rich envelope contains more than about 5% of the initial mass, the star is a red supergiant, and whenever the H-rich envelope contains less than 1% of the total mass the star is a blue supergiant. For intermediate situations, intermediate colors/effective temperatures are obtained. Yellow progenitors for core collapse supernovae can be explained by the enhanced mass-loss rate models, while the red progenitors are better fitted by the standard mass-loss rate models.
Stellar astrophysicists are increasingly taking into account the effects of orbiting companions on stellar evolution. New discoveries, many thanks to systematic time-domain surveys, have underlined the role of binary star interactions in a range of a strophysical events, including some that were previously interpreted as due uniquely to single stellar evolution. Here, we review classical binary phenomena such as type Ia supernovae, and discuss new phenomena such as intermediate luminosity transients, gravitational wave-producing double black holes, or the interaction between stars and their planets. Finally, we examine the reassessment of well-known phenomena in light of interpretations that include both single and binary stars, for example supernovae of type Ib and Ic or luminous blue variables. At the same time we contextualise the new discoveries within the framework and nomenclature of the corpus of knowledge on binary stellar evolution. The last decade has heralded an era of revival in stellar astrophysics as the complexity of stellar observations is increasingly interpreted with an interplay of single and binary scenarios. The next decade, with the advent of massive projects such as the Large Synoptic Survey Telescope, the Square Kilometre Array, the James Webb Space Telescope and increasingly sophisticated computational methods, will see the birth of an expanded framework of stellar evolution that will have repercussions in many other areas of astrophysics such as galactic evolution and nucleosynthesis.
79 - C. S. Kochanek 2020
We examine the problem of estimating the mass range corresponding to the observed red supergiant (RSG) progenitors of Type IIP supernovae. Using Monte Carlo simulations designed to reproduce the properties of the observations, we find that the approa ch of Davies & Beasor (2018) significantly overestimates the maximum mass, yielding an upper limit of Mh/Msun=20.5+/-2.6 for an input population with Mh/Msun=18. Our preferred Bayesian approach does better, with Mh/Msun=18.6+/-2.1 for the same input populations, but also tends to overestimate Mh. For the actual progenitor sample and a Salpeter initial mass function we find Mh/Msun=19.01-2.04+4.04 for the Eldridge et al. (2004) mass-luminosity relation used by Smartt et al. (2009) and Davies & Beasor (2018), and Mh/Msun=21.28_-2.28+4.52 for the Sukhbold et al. (2018) mass-luminosity relation. Based on the Monte Carlo simulations, we estimate that these are overestimated by 3.3+/-0.8Mh. The red supergiant problem remains.
We present H-band interferometric observations of the red supergiant (RSG) AZ Cyg made with the Michigan Infra-Red Combiner (MIRC) at the six-telescope Center for High Angular Resolution Astronomy (CHARA) Array. The observations span 5 years (2011-20 16), offering insight into the short and long-term evolution of surface features on RSGs. Using a spectrum of AZ Cyg obtained with SpeX on the NASA InfraRed Telescope Facility (IRTF) and synthetic spectra calculated from spherical MARCS, spherical PHOENIX, and SAtlas model atmospheres, we derive $T_{text{eff}}$ is between $3972 K$ and $4000 K$ and $log~g$ between $-0.50$ and $0.00$, depending on the stellar model used. Using fits to the squared visibility and Gaia parallaxes we measure its average radius $R=911^{+57}_{-50}~R_{odot}$. Reconstructions of the stellar surface using our model-independent imaging codes SQUEEZE and OITOOLS.jl show a complex surface with small bright features that appear to vary on a timescale of less than one year and larger features that persist for more than one year. 1D power spectra of these images suggest a characteristic size of $0.52-0.69~R_{star}$ for the larger, long lived features. This is close to the values of $0.51-0.53~R_{star}$ derived from 3D RHD models of stellar surfaces. We conclude that interferometric imaging of this star is in line with predictions of 3D RHD models but that short-term imaging is needed to more stringently test predictions of convection in RSGs.
Context. Red supergiants are observed to undergo vigorous mass-loss. However, to date, no theoretical model has succeeded in explaining the origins of these objects winds. This strongly limits our understanding of red supergiant evolution and Type II -P and II-L supernova progenitor properties. Aims. We examine the role that vigorous atmospheric turbulence may play in initiating and determining the mass-loss rates of red supergiant stars. Methods. We analytically and numerically solve the equations of conservation of mass and momentum, which we later couple to an atmospheric temperature structure, to obtain theoretically motivated mass-loss rates. We then compare these to state-of-the-art empirical mass-loss rate scaling formulae as well as observationally inferred mass-loss rates of red supergiants. Results. We find that the pressure due to the characteristic turbulent velocities inferred for red supergiants is sufficient to explain the mass-loss rates of these objects in the absence of the normally employed opacity from circumstellar dust. Motivated by this initial success, we provide a first theoretical and fully analytic mass-loss rate prescription for red supergiants. We conclude by highlighting some intriguing possible implications of these rates for future studies of stellar evolution, especially in light of the lack of a direct dependence on metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا