ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on Veraverbekes theorem

186   0   0.0 ( 0 )
 نشر من قبل Stan Zachary
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Stan Zachary




اسأل ChatGPT حول البحث

We give an elementary probabilistic proof of Veraverbekes Theorem for the asymptotic distribution of the maximum of a random walk with negative drift and heavy-tailed increments. The proof gives insight into the principle that the maximum is in general attained through a single large jump.



قيم البحث

اقرأ أيضاً

98 - Stefan Tappe 2020
The von Weizs{a}cker theorem states that every sequence of nonnegative random variables has a subsequence which is Ces`{a}ro convergent to a nonnegative random variable which might be infinite. The goal of this note is to provide a description of the set where the limit is finite. For this purpose, we use a decomposition result due to Brannath and Schachermayer.
243 - Tian-Jun Li , Weiwei Wu 2015
We generalize Bangerts non-hyperbolicity result for uniformly tamed almost complex structures on standard symplectic $R^{2n}$ to asymtotically standard symplectic manifolds.
We prove a Gannon-Lee theorem for non-globally hyperbolic Lo-rentzian metrics of regularity $C^1$, the most general regularity class currently available in the context of the classical singularity theorems. Along the way we also prove that any maximi zing causal curve in a $C^1$-spacetime is a geodesic and hence of $C^2$-regularity.
Let $mathbb{G}=left(mathbb{V},mathbb{E}right)$ be the graph obtained by taking the cartesian product of an infinite and connected graph $G=(V,E)$ and the set of integers $mathbb{Z}$. We choose a collection $mathcal{C}$ of finite connected subgraphs o f $G$ and consider a model of Bernoulli bond percolation on $mathbb{G}$ which assigns probability $q$ of being open to each edge whose projection onto $G$ lies in some subgraph of $mathcal{C}$ and probability $p$ to every other edge. We show that the critical percolation threshold $p_{c}left(qright)$ is a continuous function in $left(0,1right)$, provided that the graphs in $mathcal{C}$ are well-spaced in $G$ and their vertex sets have uniformly bounded cardinality. This generalizes a recent result due to Szabo and Valesin.
We present a short, self-contained, and purely combinatorial proof of Linniks theorem: for any $varepsilon > 0$ there exists a constant $C_varepsilon$ such that for any $N$, there are at most $C_varepsilon$ primes $p leqslant N$ such that the least p ositive quadratic non-residue modulo $p$ exceeds $N^varepsilon$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا