ترغب بنشر مسار تعليمي؟ اضغط هنا

Note on a theorem of Bangert

244   0   0.0 ( 0 )
 نشر من قبل Weiwei Wu
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize Bangerts non-hyperbolicity result for uniformly tamed almost complex structures on standard symplectic $R^{2n}$ to asymtotically standard symplectic manifolds.



قيم البحث

اقرأ أيضاً

176 - Stan Zachary 2014
We give an elementary probabilistic proof of Veraverbekes Theorem for the asymptotic distribution of the maximum of a random walk with negative drift and heavy-tailed increments. The proof gives insight into the principle that the maximum is in general attained through a single large jump.
We show that a nondegenerate tight contact form on the 3-sphere has exactly two simple closed Reeb orbits if and only if the differential in linearized contact homology vanishes. Moreover, in this case the Floquet multipliers and Conley-Zehnder indic es of the two Reeb orbits agree with those of a suitable irrational ellipsoid in 4-space.
121 - Rolando Perez Iii 2020
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of $pi$. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.
We prove a Gannon-Lee theorem for non-globally hyperbolic Lo-rentzian metrics of regularity $C^1$, the most general regularity class currently available in the context of the classical singularity theorems. Along the way we also prove that any maximi zing causal curve in a $C^1$-spacetime is a geodesic and hence of $C^2$-regularity.
We present a short, self-contained, and purely combinatorial proof of Linniks theorem: for any $varepsilon > 0$ there exists a constant $C_varepsilon$ such that for any $N$, there are at most $C_varepsilon$ primes $p leqslant N$ such that the least p ositive quadratic non-residue modulo $p$ exceeds $N^varepsilon$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا