ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Index Theorem on the Lattice through the Spectral Flow of Staggered Fermions

117   0   0.0 ( 0 )
 نشر من قبل Eduardo Follana
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic (quenched) gauge configurations. We obtain clear numerical evidence that the definition works as expected: there is a clear separation between crossings near and far away from the origin, and the topological charge defined through the crossings near the origin agrees, for most configurations, with the one defined through the near-zero modes of large taste-singlet chirality of the staggered Dirac operator. The crossings are much closer to the origin if we improve the Dirac operator used in the definition, and they move towards the origin as we decrease the lattice spacing.



قيم البحث

اقرأ أيضاً

We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic gauge configurations. We study both the unimproved and the HISQ Dirac operators. We compare the spectral flow index with the index obtained by identifying low-lying modes of large chirality.
142 - David H. Adams 2009
A way to identify the would-be zero-modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accor dance with the Index Theorem. The key idea is to consider the spectral flow of a certain hermitian version of the staggered Dirac operator. The staggered fermion index thus obtained can be used as a new way to assign the topological charge of lattice gauge fields. In a numerical study in U(1) backgrounds in 2 dimensions it is found to perform as well as the Wilson index while being computationally more efficient. It can also be expressed as the index of an overlap Dirac operator with a new staggered fermion kernel.
135 - David H. Adams 2010
A new formulation of chiral fermions on the lattice is presented. It is a version of overlap fermions, but built from the computationally efficient staggered fermions rather than the previously used Wilson fermions. The construction reduces the four quark flavors described by the staggered fermion to two quark flavors; this pair can be taken as the up and down quarks in Lattice QCD. The exact flavored chiral symmetry of the staggered fermion gets converted into an unflavored Ginsparg-Wilson chiral symmetry of the new overlap fermion, which also has pairs of exact chiral zero-modes satisfying the Index Theorem. Stability under radiative corrections is checked. A domain wall formulation giving a truncation of this overlap construction is also outlined.
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD. We find a clear separation of the spectrum of eigenvalues into high chirality, would-be zero modes and others, in accordance with the Index Theore m. We find the expected clustering of the non-zero modes into quartets as we approach the continuum limit. The predictions of random matrix theory for the epsilon regime are well reproduced. We conclude that improved staggered quarks near the continuum limit respond correctly to QCD topology.
233 - Claude Bernard 2007
With sufficiently light up and down quarks the isovector ($a_0$) and isosinglet ($f_0$) scalar meson propagators are dominated at large distance by two-meson states. In the staggered fermion formulation of lattice quantum chromodynamics, taste-symmet ry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rSXPT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the $a_0$ and $f_0$ channels in the ``Asqtad improved staggered fermion formulation in a lattice ensemble with lattice spacing $a = 0.12$ fm. We analyze those correlators in the context of rSXPT and obtain values of the low energy chiral couplings that are reasonably consistent with previous determinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا