ترغب بنشر مسار تعليمي؟ اضغط هنا

Pairs of chiral quarks on the lattice from staggered fermions

86   0   0.0 ( 0 )
 نشر من قبل David Adams
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف David H. Adams




اسأل ChatGPT حول البحث

A new formulation of chiral fermions on the lattice is presented. It is a version of overlap fermions, but built from the computationally efficient staggered fermions rather than the previously used Wilson fermions. The construction reduces the four quark flavors described by the staggered fermion to two quark flavors; this pair can be taken as the up and down quarks in Lattice QCD. The exact flavored chiral symmetry of the staggered fermion gets converted into an unflavored Ginsparg-Wilson chiral symmetry of the new overlap fermion, which also has pairs of exact chiral zero-modes satisfying the Index Theorem. Stability under radiative corrections is checked. A domain wall formulation giving a truncation of this overlap construction is also outlined.

قيم البحث

اقرأ أيضاً

Recently, the interest in local lattice actions for chiral fermions has revived, with the proposition of new local actions in which only the minimal number of doublers appear. The trigger role of graphene having a minimally doubled, chirally invarian t, Dirac-like excitation spectrum can not be neglected. The challenge is to construct an action which preserves enough symmetries to be useful in lattice gauge calculations. We present a new approach to obtain local lattice actions for fermions using a reinterpretation of the staggered lattice approach of Kogut and Susskind. This interpretation is based on the similarity with the staggered lattice approach in FDTD simulations of acoustics and electromagnetism. It allows us to construct a local action for chiral fermions which has all discrete symmetries and the minimal number of fermion flavors, but which is non-Hermitian in real space. However, we argue that this will not pose a threat to the usability of the theory.
79 - E. Follana , Q. Mason , C. Davies 2006
We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading order in the quarks veloc ity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are at least 3--4 times smaller than the widely used ASQTAD action. We show how to estimate errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are no more than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4 errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of~111(5) MeV which compares well with experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D_s mesons.
187 - Claude Bernard 2007
With sufficiently light up and down quarks the isovector ($a_0$) and isosinglet ($f_0$) scalar meson propagators are dominated at large distance by two-meson states. In the staggered fermion formulation of lattice quantum chromodynamics, taste-symmet ry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rSXPT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the $a_0$ and $f_0$ channels in the ``Asqtad improved staggered fermion formulation in a lattice ensemble with lattice spacing $a = 0.12$ fm. We analyze those correlators in the context of rSXPT and obtain values of the low energy chiral couplings that are reasonably consistent with previous determinations.
We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic (quenched) gauge configurations. We obtain clear numerical evidence that the definition works as expected: there is a clear separation betw een crossings near and far away from the origin, and the topological charge defined through the crossings near the origin agrees, for most configurations, with the one defined through the near-zero modes of large taste-singlet chirality of the staggered Dirac operator. The crossings are much closer to the origin if we improve the Dirac operator used in the definition, and they move towards the origin as we decrease the lattice spacing.
96 - David H. Adams 2009
A way to identify the would-be zero-modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accor dance with the Index Theorem. The key idea is to consider the spectral flow of a certain hermitian version of the staggered Dirac operator. The staggered fermion index thus obtained can be used as a new way to assign the topological charge of lattice gauge fields. In a numerical study in U(1) backgrounds in 2 dimensions it is found to perform as well as the Wilson index while being computationally more efficient. It can also be expressed as the index of an overlap Dirac operator with a new staggered fermion kernel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا