ترغب بنشر مسار تعليمي؟ اضغط هنا

On the cycle map of a finite group

294   0   0.0 ( 0 )
 نشر من قبل Masaki Kameko
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Masaki Kameko




اسأل ChatGPT حول البحث

Let p be an odd prime number. We show that there exists a finite group of order p^{p+3} whose the mod p cycle map from the mod p Chow ring of its classifying space to its ordinary mod p cohomology is not injective.



قيم البحث

اقرأ أيضاً

58 - Masaki Kameko 2016
We compute the Chern subgroup of the 4-th integral cohomology group of a certain classifying space and show that it is a proper subgroup. Such a classifying space gives us new counterexamples for the integral Hodge and Tate conjectures modulo torsion.
140 - Masaki Kameko 2014
We give non-torsion counterexamples against the integral Tate conjecture for finite fields. We extend the result due to Pirutka and Yagita for prime numbers 2,3,5 to all prime numbers.
Given a smooth and separated K(pi,1) variety X over a field k, we associate a cycle class in etale cohomology with compact supports to any continuous section of the natural map from the arithmetic fundamental group of X to the absolute Galois group o f k. We discuss the algebraicity of this class in the case of curves over p-adic fields, and deduce in particular a new proof of Stixs theorem according to which the index of a curve X over a p-adic field k must be a power of p as soon as the natural map from the arithmetic fundamental group of X to the absolute Galois group of k admits a section. Finally, an etale adaptation of Beilinsons geometrization of the pronilpotent completion of the topological fundamental group allows us to lift this cycle class in suitable cohomology groups.
104 - Vladimir Drinfeld 2021
Let Sigma denote the prismatization of Spf (Z_p). The multiplicative group over Sigma maps to the prismatization of the multiplicative group over Spf (Z_p). We prove that the kernel of this map is the Cartier dual of some 1-dimensional formal group o ver Sigma. We obtain some results about this formal group (e.g., we describe its Lie algebra). We give a very explicit description of the pullback of the formal group to the quotient of the q-de Rham prism by the action of the multiplicative group of Z_p.
We analyze cohomological properties of the Krichever map and use the results to study Weierstrass cycles in moduli spaces and the tautological ring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا