ترغب بنشر مسار تعليمي؟ اضغط هنا

Are there quantum oscillations in an incommensurate charge density wave?

231   0   0.0 ( 0 )
 نشر من قبل Yi Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Because a material with an incommensurate charge density wave (ICDW) is only quasi-periodic, Blochs theorem does not apply and there is no sharply defined Fermi surface. We will show that, as a consequence, there are no quantum oscillations which are truly periodic functions of $1/B$ (where $ B$ is the magnitude of an applied magnetic field). For a weak ICDW, there exist broad ranges of $1/B$ in which approximately periodic variations occur, but with frequencies that vary inexorably in an unending cascade with increasing $1/B$. For a strong ICDW, e.g. in a quasi-crystal, no quantum oscillations survive at all. Rational and irrational numbers really are different.



قيم البحث

اقرأ أيضاً

Here we report a scanning tunneling microscopy (STM) and spectroscopy (STS) study in the superconducting state of 2H-NbS2. We directly visualize the existence of incommensurate charge density wave (CDW) that is pinned by atomic impurities. In strong tunneling conditions, the incommensurate CDW is de-pinned from impurities by the electric field from STM tip. We perform STM-based inelastic tunneling spectroscopy (IETS) to detect phonon excitations in 2H-NbS2 and measure the influence of atomic impurities on local phonon excitations. In comparison with the calculated vibrational density of states in 2H-NbS2, we find two branches of phonon excitations which correspond to the vibrations of Nb ions and S ions, and the strength of the local phonon excitations is insensitive to the atomic impurities. Our results demonstrate the coexistence of incommensurate CDW and superconductivity in 2H-NbS2, and open the way of detecting atomic-scale phonon excitations in transition metal dichalcogenides with STM-based IETS.
Bulk 1T-TaSe2 exhibits unusually high charge density wave (CDW) transition temperatures of 600 K and 473 K below which the material exists in the incommensurate (I-CDW) and the commensurate (C-CDW) charge-density-wave phases, respectively. The C-CDW reconstruction of the lattice coincides with new Raman peaks resulting from zone-folding of phonon modes from middle regions of the original Brillouin zone back to the Gamma point. The C-CDW transition temperatures as a function of film thickness are determined from the evolution of these new Raman peaks and they are found to decrease from 473K to 413K as the film thicknesses decrease from 150 nm to 35 nm. A comparison of the Raman data with ab initio calculations of both the normal and C-CDW phases gives a consistent picture of the zone-folding of the phonon modes following lattice reconstruction. In the I-CDW phase, the loss of translational symmetry coincides with a strong suppression and broadening of the Raman peaks. The observed change in the C-CDW transition temperature is consistent with total energy calculations of bulk and monolayer 1T-TaSe2.
We study interaction effect of quantum spin Hall state in InAs/GaSb quantum wells under an in-plane magnetic field by using the self-consistent mean field theory. We construct a phase diagram as a function of intra-layer and inter-layer interactions, and identify two novel phases, a charge/spin density wave phase and an exciton condensate phase. The charge/spin density wave phase is topologically non-trivial with helical edge transport at the boundary, while the exciton condensate phase is topologically trivial. The Zeeman effect is strongly renormalized due to interaction in certain parameter regimes of the system, leading to a much smaller g-factor, which may stabilize the helical edge transport.
The nature of superconductivity in BiS$_2$-based superconductors has been controversial while ab-initio calculations proposed this system in close proximity to a charge-density-wave (CDW) phase. Using high-energy high-flux X-ray diffraction, we revea l an intrinsic and long-range CDW phase coexisting with superconductivity in NdO$_{1-x}$F$_{x}$BiS$_2$ superconductor ($x$ = 0.37 and 0.3). The CDW wavevector in NdO$_{0.63}$F$_{0.37}$BiS$_2$ correspond Q$_{rm{CDW}}$ = (0.17, 0.17, 0.5) and is associated with transverse atomic displacements. Interestingly, this wavevector does not match theoretical expectations based on either phonon softening or Fermi surface nesting. In NdO$_{0.7}$F$_{0.3}$BiS$_2$, where the superconducting transition temperature is highest, the CDW satellites are slightly broader and weaker compared to NdO$_{0.63}$F$_{0.37}$BiS$_2$, possibly suggesting the competition with the superconductivity. Lastly, we measure a thermal diffuse scattering across the superconducting transition temperature and find no meaningful changes in favor of the unconventional pairing mechanism. Our result suggests the importance of understanding CDW which might hold a key to the superconductivity in the BiS$_2$-based superconductor.
105 - T. Matsuura , J. Hara , K. Inagaki 2014
We investigate the charge density wave transport in a quasi-one-dimensional conductor, orthorhombic tantalum trisulfide ($o$-TaS$_3$), by applying a radio-frequency ac voltage. We find a new ac-dc interference spectrum in the differential conductance , which appear on both sides of the zero-bias peak. The frequency and amplitude dependences of the new spectrum do not correspond to those of any usual ac-dc interference spectrum (Shapiro steps). The results suggest that CDW phase dynamics has a hidden degree of freedom. We propose a model in which $2pi$ phase solitons behave as liquid. The origin of the new spectrum is that the solitons are depinned from impurity potentials assisted by an ac field when small dc field is applied. Our results provide a new insight as regards our understanding of an elementary process in CDW dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا