ﻻ يوجد ملخص باللغة العربية
Ergodicity in quantum many-body systems is - despite its fundamental importance - still an open problem. Many-body localization provides a general framework for quantum ergodicity, and may therefore offer important insights. However, the characterization of many-body localization through simple observables is a difficult task. In this article, we introduce a measure for distances in Hilbert space for spin-1/2 systems that can be interpreted as a generalization of the Anderson localization length to the many-body Hilbert space. We show that this many-body localization length is equivalent to a simple local observable in real space, which can be measured in experiments of superconducting qubits, polar molecules, Rydberg atoms, and trapped ions. Using the many-body localization length and a necessary criterion for ergodicity that it provides, we study many-body localization and quantum ergodicity in power-law-interacting Ising models subject to disorder in the transverse field. Based on the nonequilibrium dynamical renormalization group, numerically exact diagonalization, and an analysis of the statistics of resonances we find a many-body localized phase at infinite temperature for small power-law exponents. Within the applicability of these methods, we find no indications of a delocalization transition.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for incr
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions decaying as power-law $V_{ij}/(r_i-r_j)^alpha$ with distance and having random
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renor
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions or long-range hopping. Based on perturbative arguments there is a common belief
The level statistics in the transition between delocalized and localized {phases of} many body interacting systems is {considered}. We recall the joint probability distribution for eigenvalues resulting from the statistical mechanics for energy level