ﻻ يوجد ملخص باللغة العربية
Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.
Fast polarization switching of light sources is required over a wide spectral range to investigate the symmetry of matter. In this Letter, we report the first experimental demonstration of the crossed-planar undulator technique at a seeded free-elect
Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particul
High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter we report
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via mul
Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking s