ترغب بنشر مسار تعليمي؟ اضغط هنا

Pbar Beam Stacking in the Recycler by Longitudinal Phase-space Coating

226   0   0.0 ( 0 )
 نشر من قبل C. M. Bhat
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. M. Bhat




اسأل ChatGPT حول البحث

Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking scheme for synchrotrons using barrier buckets without any emittance dilution to the beam. First I discuss the general principle of the method, called longitudinal phase-space coating. Multi-particle beam dynamics simulations of the scheme applied to the Recycler, convincingly validates the concepts and feasibility of the method. Then I demonstrate the technique experimentally in the Recycler and also use it in operation. A spin-off of this scheme is its usefulness in mapping the incoherent synchrotron tune spectrum of the beam particles in barrier buckets and producing a clean hollow beam in longitudinal phase space. Both of which are described here in detail with illustrations. The beam stacking scheme presented here is the first of its kind.



قيم البحث

اقرأ أيضاً

121 - C. M. Bhat 2015
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via mul ti-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.
Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.
The brightness of the antiproton beam in Fermilabs 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.
135 - W. Chou , D. Capista , J. Griffin 2008
Two barrier RF systems were fabricated, tested and installed in the Fermilab Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90 kHz. When a stationary barrier is combined with a moving barrier, injected beams from the Boo ster can be continuously deflected, folded and stacked in the Main Injector, which leads to doubling of the beam intensity. This paper gives a report on the beam experiment using this novel technology.
The possibility to perform high-resolution time-resolved electron energy loss spectroscopy has the potential to impact a broad range of research fields. Resolving small energy losses with ultrashort electron pulses, however, is an enormous challenge due to the low average brightness of a pulsed beam. In this letter, we propose to use time-of-flight measurements combined with longitudinal phase space manipulation using resonant microwave cavities. This allows for both an accurate detection of energy losses with a high current throughput, and efficient monochromation. First, a proof-of-principle experiment is presented, showing that with the incorporation of a compression cavity the flight time resolution can be improved significantly. Then, it is shown through simulations that by adding a cavity-based monochromation technique, a full-width-at-half-maximum energy resolution of 22 meV can be achieved with 3.1 ps pulses at a beam energy of 30 keV with currently available technology. By combining state-of-the-art energy resolutions with a pulsed electron beam, the technique proposed here opens up the way to detecting short-lived excitations within the regime of highly collective physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا