ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

68   0   0.0 ( 0 )
 نشر من قبل Giorgos Leloudas
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe-II (hydrogen-rich) occur in more massive, more metal-rich galaxies with softer radiation fields. Therefore, if SLSNe-II constitute a uniform class, their progenitor systems are likely different from those of H-poor SLSNe. Gamma-ray bursts (GRBs) are, on average, not found in as extreme environments as H-poor SLSNe. We propose that H-poor SLSNe result from the very first stars exploding in a starburst, even earlier than GRBs. This might indicate a bottom-light initial mass function in these systems. SLSNe present a novel method of selecting candidate EELGs independent of their luminosity.

قيم البحث

اقرأ أيضاً

We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, thoug h with a steeper rise and lower peak luminosity (M_bol = -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzjs energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M_B ~ -18 mag, diameter < 800 pc), with a low stellar mass (M_* ~ 2.4 * 10^7 M_sun), young stellar population (tau_* ~ 5 Myr), and a star formation rate of ~ 2-3 M_sun/yr. The specific star formation rate is the highest seen in a SLSN host so far (~ 100 Gyr^{-1}). We detect the [O III]lambda 4363 line, and find a low metallicity: 12+(O/H) = 7.8 +/- 0.2 (~ 0.1 Z_sun). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.
We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory: iPTF13ajg. At a redshift of z=0.7403, derived from narrow absorption lines, iPTF13ajg peaked at an absolut e magnitude M(u,AB)=-22.5, one of the most luminous supernovae to date. The uBgRiz light curves, obtained with the P48, P60, NOT, DCT, and Keck telescopes, and the nine-epoch spectral sequence secured with the Keck and the VLT (covering 3 rest-frame months), are tied together photometrically to provide an estimate of the flux evolution as a function of time and wavelength. The observed bolometric peak luminosity of iPTF13ajg is 3.2x10^44 erg/s, while the estimated total radiated energy is 1.3x10^51 erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the VLT. From Voigt-profile fitting, we derive the column densities log N(Mg I)=11.94+-0.06, log N(Mg II)=14.7+-0.3, and log N(Fe II)=14.25+-0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs), whose progenitors are also thought to be massive stars. This suggests that the environments of SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a strict lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. No host-galaxy emission lines are detected, leading to an upper limit on the unobscured star-formation rate of SFR([OII])<0.07 Msun/yr. Late-time imaging shows the host galaxy of iPTF13ajg to be faint, with g(AB)~27.0 and R(AB)>=26.0 mag, which roughly corresponds to M(B,Vega) >~ -17.7 mag. [abridged]
114 - Lin Yan 2017
SN2017egm is the closest (z=0.03) H-poor superluminous supernova (SLSN-I) detected to date, and a rare example of an SLSN-I in a massive and metal-rich galaxy. Here we present the HST UV & optical spectra covering (1000 - 5500)A taken at +3 day relat ive to the peak. Our data reveal two sets of absorption systems, separated by 235 km/s, at redshifts matching the host galaxy, NGC3191 and its companion galaxy 73 arcsec apart. Weakly damped Lyman-alpha absorption lines are detected at these two redshifts, with HI column densities of $(3.0pm0.8)times10^{19}$ and $(3.7pm0.9)times10^{19}$,cm$^{-2}$ respectively. This is an order of magnitude smaller than HI column densities in the disks of nearby galaxies ($>10^{10}M_odot$) and suggests that SN2017egm is on the near side of NGC3191 and has a low host extinction (E(B-V)=0.007). Using unsaturated metal absorption lines and taking into account of H ionization and dust depletion corrections, we find that the host of SN2017egm probably has a solar or higher metallicity and is unlikely to be a dwarf companion to NGC3191. Comparison of early-time UV spectra of SN2017egm, Gaia16apd, iPTF13ajg and PTF12dam finds that the continuum at wavelength > 2800A is well fit by a blackbody, whereas the continuum at wavelength < 2800A is considerably below the model. The degree of UV suppression varies from source to source, with the 1400A to 2800A continuum flux ratio of 1.5 for Gaia16apd and 0.4 for iPTF13ajg. This can not be explained by the differences in magnetar power or blackbody temperature (i.e. color temperature). Finally, the UV spectra reveal a common set of seven broad absorption features and their equivalent widths are similar (within a factor of 2) among the four events. These seven features bode well for future high-z SLSN-I spectral classifications.
131 - Lin Yan 2016
We report the first maximum-light far-Ultraviolet to near-infrared spectra (1000A - 1.62um, rest) of a H-poor superluminous supernova, Gaia16apd. At z=0.1018, it is one of the closest and the UV brightest such events, with 17.4 (AB) magnitude in Swif t UV band (1928A) at -11days pre-maximum. Assuming an exponential form, we derived the rise time of 33days and the peak bolometric luminosity of 3x10^{44}ergs^-1. At maximum light, the estimated photospheric temperature and velocity are 17,000K and 14,000kms^-1 respectively. The inferred radiative and kinetic energy are roughly 1x10^{51} and 2x10^{52}erg. Gaia16apd is extremely UV luminous, emitting 50% of its total luminosity at 1000 - 2500A. Compared to the UV spectra (normalized at 3100A) of well studied SN1992A (Ia), SN2011fe(Ia), SN1999em (IIP) and SN1993J (IIb), it has orders of magnitude more far-UV emission. This excess is interpreted primarily as a result of weaker metal line blanketing due to much lower abundance of iron-group elements in the outer ejecta. Because these elements originate either from the natal metallicity of the star, or have been newly produced, our observation provides direct evidence that little of these freshly synthesized material, including 56Ni, was mixed into the outer ejecta, and the progenitor metallicity is likely sub-solar. This disfavors Pair-Instability Supernova (PISN) models with Helium core masses >=90Msun, where substantial 56Ni material is produced. Higher photospheric temperature of Gaia16apd than that of normal SNe may also contribute to the observed far-UV excess. We find some indication that UV luminous SLSNe-I like Gaia16apd could be common. Using the UV spectra, we show that WFIRST could detect SLSNe-I out to redshift of 8.
Hydrogen-poor superluminous supernovae (SLSN-I) are a class of rare and energetic explosions discovered in untargeted transient surveys in the past decade. The progenitor stars and the physical mechanism behind their large radiated energies ($sim10^{ 51}$ erg) are both debated, with one class of models primarily requiring a large rotational energy, while the other requires very massive progenitors to either convert kinetic energy into radiation via interaction with circumstellar material (CSM), or engender a pair-instability explosion. Observing the structure of the CSM around SLSN-I offers a powerful test of some scenarios, though direct observations are scarce. Here, we present a series of spectroscopic observations of the SLSN-I iPTF16eh, which reveal both absorption and time- and frequency-variable emission in the Mg II resonance doublet. We show that these observations are naturally explained as a resonance scattering light echo from a circumstellar shell. Modeling the evolution of the emission, we find a shell radius of 0.1 pc and velocity of 3300 km s$^{-1}$, implying the shell was ejected three decades prior to the supernova explosion. These properties match theoretical predictions of pulsational pair-instability shell ejections, and imply the progenitor had a He core mass of $sim 50-55~{rm M}_{odot}$, corresponding to an initial mass of $sim 115~{rm M}_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا