ترغب بنشر مسار تعليمي؟ اضغط هنا

Far-Ultraviolet to Near-Infrared Spectroscopy of A Nearby Hydrogen Poor Superluminous Supernova Gaia16apd

132   0   0.0 ( 0 )
 نشر من قبل Lin Yan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lin Yan




اسأل ChatGPT حول البحث

We report the first maximum-light far-Ultraviolet to near-infrared spectra (1000A - 1.62um, rest) of a H-poor superluminous supernova, Gaia16apd. At z=0.1018, it is one of the closest and the UV brightest such events, with 17.4 (AB) magnitude in Swift UV band (1928A) at -11days pre-maximum. Assuming an exponential form, we derived the rise time of 33days and the peak bolometric luminosity of 3x10^{44}ergs^-1. At maximum light, the estimated photospheric temperature and velocity are 17,000K and 14,000kms^-1 respectively. The inferred radiative and kinetic energy are roughly 1x10^{51} and 2x10^{52}erg. Gaia16apd is extremely UV luminous, emitting 50% of its total luminosity at 1000 - 2500A. Compared to the UV spectra (normalized at 3100A) of well studied SN1992A (Ia), SN2011fe(Ia), SN1999em (IIP) and SN1993J (IIb), it has orders of magnitude more far-UV emission. This excess is interpreted primarily as a result of weaker metal line blanketing due to much lower abundance of iron-group elements in the outer ejecta. Because these elements originate either from the natal metallicity of the star, or have been newly produced, our observation provides direct evidence that little of these freshly synthesized material, including 56Ni, was mixed into the outer ejecta, and the progenitor metallicity is likely sub-solar. This disfavors Pair-Instability Supernova (PISN) models with Helium core masses >=90Msun, where substantial 56Ni material is produced. Higher photospheric temperature of Gaia16apd than that of normal SNe may also contribute to the observed far-UV excess. We find some indication that UV luminous SLSNe-I like Gaia16apd could be common. Using the UV spectra, we show that WFIRST could detect SLSNe-I out to redshift of 8.

قيم البحث

اقرأ أيضاً

114 - Lin Yan 2017
SN2017egm is the closest (z=0.03) H-poor superluminous supernova (SLSN-I) detected to date, and a rare example of an SLSN-I in a massive and metal-rich galaxy. Here we present the HST UV & optical spectra covering (1000 - 5500)A taken at +3 day relat ive to the peak. Our data reveal two sets of absorption systems, separated by 235 km/s, at redshifts matching the host galaxy, NGC3191 and its companion galaxy 73 arcsec apart. Weakly damped Lyman-alpha absorption lines are detected at these two redshifts, with HI column densities of $(3.0pm0.8)times10^{19}$ and $(3.7pm0.9)times10^{19}$,cm$^{-2}$ respectively. This is an order of magnitude smaller than HI column densities in the disks of nearby galaxies ($>10^{10}M_odot$) and suggests that SN2017egm is on the near side of NGC3191 and has a low host extinction (E(B-V)=0.007). Using unsaturated metal absorption lines and taking into account of H ionization and dust depletion corrections, we find that the host of SN2017egm probably has a solar or higher metallicity and is unlikely to be a dwarf companion to NGC3191. Comparison of early-time UV spectra of SN2017egm, Gaia16apd, iPTF13ajg and PTF12dam finds that the continuum at wavelength > 2800A is well fit by a blackbody, whereas the continuum at wavelength < 2800A is considerably below the model. The degree of UV suppression varies from source to source, with the 1400A to 2800A continuum flux ratio of 1.5 for Gaia16apd and 0.4 for iPTF13ajg. This can not be explained by the differences in magnetar power or blackbody temperature (i.e. color temperature). Finally, the UV spectra reveal a common set of seven broad absorption features and their equivalent widths are similar (within a factor of 2) among the four events. These seven features bode well for future high-z SLSN-I spectral classifications.
Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below $sim 3000$ AA. Yan et al (2016) have recently presented HST UV spectra and attributed the UV flux to low metallicity and hence reduced line blanketing. Here we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by $sim 10$-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting $M_{rm ej} = 4 (0.2/kappa)$ M$_odot$, where $kappa$ is the opacity in cm$^2$g$^{-1}$, and forming a magnetar with spin period $P=2$ ms, and $B=2times10^{14}$ G (lower than other SLSNe with comparable rise-times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, $Z=0.18$ Z$_odot$, is comparable to other SLSNe.
We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, thoug h with a steeper rise and lower peak luminosity (M_bol = -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzjs energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M_B ~ -18 mag, diameter < 800 pc), with a low stellar mass (M_* ~ 2.4 * 10^7 M_sun), young stellar population (tau_* ~ 5 Myr), and a star formation rate of ~ 2-3 M_sun/yr. The specific star formation rate is the highest seen in a SLSN host so far (~ 100 Gyr^{-1}). We detect the [O III]lambda 4363 line, and find a low metallicity: 12+(O/H) = 7.8 +/- 0.2 (~ 0.1 Z_sun). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.
216 - Lin Yan 2015
iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z=0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises within (83-148)days (rest-frame) to reach a peak bolometric luminosity of 1.3x$10^{44}$erg/s , then decays very slowly at 0.015mag. per day. The measured ejecta velocity is 13000km/s. The inferred explosion characteristics, such as the ejecta mass (67-220$M_odot$), the total radiative and kinetic energy ($10^{51}$ & 2x$10^{53}$erg respectively), is typical of a slow-evolving H-poor SLSN event. However, the late-time spectrum taken at +251days reveals a Balmer Halpha emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ~4500km/s and has a ~300km/s blue-ward shift relative to the narrow component. We interpret this broad H$alpha$ emission with luminosity of $sim$2$times10^{41}$,erg,s$^{-1}$ as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of $sim4times10^{16}$,cm from the explosion site. This ejecta-CSM interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock ionized CSM shell implies that its Thomson scattering optical depth is likely <1, thus setting upper limits on the CSM mass <30$M_odot$ and the volume number density <4x$10^8cm^{-3}$. Of the existing models, a Pulsational Pair Instability Supernova model can naturally explain the observed 30$M_odot$ H-shell, ejected from a progenitor star with an initial mass of (95-150)$M_odot$ about 40 years ago. We estimate that at least $sim$15% of all SLSNe-I may have late-time Balmer emission lines.
Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe-II (hydrogen-rich) occur in more massive, more metal-rich galaxies with softer radiation fields. Therefore, if SLSNe-II constitute a uniform class, their progenitor systems are likely different from those of H-poor SLSNe. Gamma-ray bursts (GRBs) are, on average, not found in as extreme environments as H-poor SLSNe. We propose that H-poor SLSNe result from the very first stars exploding in a starburst, even earlier than GRBs. This might indicate a bottom-light initial mass function in these systems. SLSNe present a novel method of selecting candidate EELGs independent of their luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا