ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative Entropy Relaxations for Signomial Optimization

104   0   0.0 ( 0 )
 نشر من قبل Venkat Chandrasekaran
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments.



قيم البحث

اقرأ أيضاً

We consider optimization problems with polynomial inequality constraints in non-commuting variables. These non-commuting variables are viewed as bounded operators on a Hilbert space whose dimension is not fixed and the associated polynomial inequalit ies as semidefinite positivity constraints. Such problems arise naturally in quantum theory and quantum information science. To solve them, we introduce a hierarchy of semidefinite programming relaxations which generates a monotone sequence of lower bounds that converges to the optimal solution. We also introduce a criterion to detect whether the global optimum is reached at a given relaxation step and show how to extract a global optimizer from the solution of the corresponding semidefinite programming problem.
120 - Pengcheng Zhao , Shankar Mohan , 2016
This paper addresses the problem of control synthesis for nonlinear optimal control problems in the presence of state and input constraints. The presented approach relies upon transforming the given problem into an infinite-dimensional linear program over the space of measures. To generate approximations to this infinite-dimensional program, a sequence of Semi-Definite Programs (SDP)s is formulated in the instance of polynomial cost and dynamics with semi-algebraic state and bounded input constraints. A method to extract a polynomial control function from each SDP is also given. This paper proves that the controller synthesized from each of these SDPs generates a sequence of values that converge from below to the value of the optimal control of the original optimal control problem. In contrast to existing approaches, the presented method does not assume that the optimal control is continuous while still proving that the sequence of approximations is optimal. Moreover, the sequence of controllers that are synthesized using the presented approach are proven to converge to the true optimal control. The performance of the presented method is demonstrated on three examples.
This paper considers the optimal control for hybrid systems whose trajectories transition between distinct subsystems when state-dependent constraints are satisfied. Though this class of systems is useful while modeling a variety of physical systems undergoing contact, the construction of a numerical method for their optimal control has proven challenging due to the combinatorial nature of the state-dependent switching and the potential discontinuities that arise during switches. This paper constructs a convex relaxation-based approach to solve this optimal control problem. Our approach begins by formulating the problem in the space of relaxed controls, which gives rise to a linear program whose solution is proven to compute the globally optimal controller. This conceptual program is solved by constructing a sequence of semidefinite programs whose solutions are proven to converge from below to the true solution of the original optimal control problem. Finally, a method to synthesize the optimal controller is developed. Using an array of examples, the performance of the proposed method is validated on problems with known solutions and also compared to a commercial solver.
The multiple-input multiple-output (MIMO) detection problem, a fundamental problem in modern digital communications, is to detect a vector of transmitted symbols from the noisy outputs of a fading MIMO channel. The maximum likelihood detector can be formulated as a complex least-squares problem with discrete variables, which is NP-hard in general. Various semidefinite relaxation (SDR) methods have been proposed in the literature to solve the problem due to their polynomial-time worst-case complexity and good detection error rate performance. In this paper, we consider two popular classes of SDR-based detectors and study the conditions under which the SDRs are tight and the relationship between different SDR models. For the enhanced complex and real SDRs proposed recently by Lu et al., we refine their analysis and derive the necessary and sufficient condition for the complex SDR to be tight, as well as a necessary condition for the real SDR to be tight. In contrast, we also show that another SDR proposed by Mobasher et al. is not tight with high probability under mild conditions. Moreover, we establish a general theorem that shows the equivalence between two subsets of positive semidefinite matrices in different dimensions by exploiting a special separable structure in the constraints. Our theorem recovers two existing equivalence results of SDRs defined in different settings and has the potential to find other applications due to its generality.
Given two pairs of quantum states, a fundamental question in the resource theory of asymmetric distinguishability is to determine whether there exists a quantum channel converting one pair to the other. In this work, we reframe this question in such a way that a catalyst can be used to help perform the transformation, with the only constraint on the catalyst being that its reduced state is returned unchanged, so that it can be used again to assist a future transformation. What we find here, for the special case in which the states in a given pair are commuting, and thus quasi-classical, is that this catalytic transformation can be performed if and only if the relative entropy of one pair of states is larger than that of the other pair. This result endows the relative entropy with a fundamental operational meaning that goes beyond its traditional interpretation in the setting of independent and identical resources. Our finding thus has an immediate application and interpretation in the resource theory of asymmetric distinguishability, and we expect it to find application in other domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا