ترغب بنشر مسار تعليمي؟ اضغط هنا

A Variable Polytrope Index Applied to Planet and Material Models

45   0   0.0 ( 0 )
 نشر من قبل Stephen P. Weppner
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new approach to a century old assumption which enhances not only planetary interior calculations but also high pressure material physics. We show that the polytropic index is the derivative of the bulk modulus with respect to pressure. We then augment the traditional polytrope theory by including a variable polytrope index within the confines of the Lane-Emden differential equation. To investigate the possibilities of this method we create a high quality universal equation of state, transforming the traditional polytrope method to a tool with the potential for excellent predictive power. The theoretical foundation of our equation of state is the same elastic observable which we found equivalent to the polytrope index, the derivative of the bulk modulus with respect to pressure. We calculate the density-pressure of six common materials up to 10$^{18}$ Pa, mass-radius relationships for the same materials, and produce plausible density-radius models for the rocky planets of our solar system. We argue that the bulk modulus and its derivatives have been under utilized in previous planet formation methods. We constrain the material surface observables for the inner core, outer core, and mantle of planet Earth in a systematic way including pressure, bulk modulus, and the polytrope index in the analysis. We believe this variable polytrope method has the necessary apparatus to be extended further to gas giants and stars. As supplemental material we provide computer code to calculate multi-layered planets.

قيم البحث

اقرأ أيضاً

Models of planet formation are built on underlying physical processes. In order to make sense of the origin of the planets we must first understand the origin of their building blocks. This review comes in two parts. The first part presents a detaile d description of six key mechanisms of planet formation: 1) The structure and evolution of protoplanetary disks 2) The formation of planetesimals 3) Accretion of protoplanets 4) Orbital migration of growing planets 5) Gas accretion and giant planet migration 6) Resonance trapping during planet migration. While this is not a comprehensive list, it includes processes for which our understanding has changed in recent years or for which key uncertainties remain. The second part of this review shows how global models are built out of planet formation processes. We present global models to explain different populations of known planetary systems, including close-in small/low-mass planets (i.e., super-Earths), giant exoplanets, and the Solar Systems planets. We discuss the different sources of water on rocky exoplanets, and use cosmochemical measurements to constrain the origin of Earths water. We point out the successes and failings of different models and how they may be falsified. Finally, we lay out a path for the future trajectory of planet formation studies.
Statistical analyses from exoplanet surveys around low-mass stars indicate that super-Earth and Neptune-mass planets are more frequent than gas giants around such stars, in agreement with core accretion theory of planet formation. Using precise radia l velocities derived from visual and near-infrared spectra, we report the discovery of a giant planet with a minimum mass of 0.46 Jupiter masses in an eccentric 204-day orbit around the very low-mass star GJ 3512. Dynamical models show that the high eccentricity of the orbit is most likely explained from planet-planet interactions. The reported planetary system challenges current formation theories and puts stringent constraints on the accretion and migration rates of planet formation and evolution models, indicating that disc instability may be more efficient in forming planets than previously thought.
80 - Beibei Liu , Jianghui Ji 2020
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we first summarize the cutting-edge states of the exoplanet and disk observations. We further present a comprehensive panoptic view of modern core accretion planet formation scenarios, including dust growth and radial drift, planetesimal formation by the streaming instability, core growth by planetesimal accretion and pebble accretion. We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations. Finally, we point out the critical questions and future directions of planet formation studies.
The exoplanet HD 118203 b, orbiting a bright (V = 8.05) host star, was discovered using the radial velocity method by da Silva et al. (2006), but was not previously known to transit. TESS photometry has revealed that this planet transits its host sta r. Five planetary transits were observed by TESS, allowing us to measure the radius of the planet to be $1.133 pm 0.031 R_J$, and to calculate the planet mass to be $2.173 pm 0.078 M_J$. The host star is slightly evolved with an effective temperature of $T_{rm eff} = 5692 pm 83$ K and a surface gravity of ${rm log}(g) = 3.891 pm 0.019$. With an orbital period of $6.134980 pm 0.000038$ days and an eccentricity of $0.316 pm 0.021$, the planet occupies a transitional regime between circularized hot Jupiters and more dynamically active planets at longer orbital periods. The host star is among the ten brightest known to have transiting giant planets, providing opportunities for both planetary atmospheric and asteroseismic studies.
77 - Felipe O. Alves 2020
While it is widely accepted that planets are formed in protoplanetary disks, there is still much debate on when this process happens. In a few cases protoplanets have been directly imaged, but for the vast majority of systems, disk gaps and cavities -- seen especially in dust continuum observations -- have been the strongest evidence of recent or on-going planet formation. We present ALMA observations of a nearly edge-on ($i = 75^{circ}$) disk containing a giant gap seen in dust but not in $^{12}$CO gas. Inside the gap, the molecular gas has a warm (100 K) component coinciding in position with a tentative free-free emission excess observed with the VLA. Using 1D hydrodynamic models, we find the structure of the gap is consistent with being carved by a planet with 4-70 $M_{rm Jup}$. The coincidence of free-free emission inside the planet-carved gap points to the planet being very young and/or still accreting. In addition, the $^{12}$CO observations reveal low-velocity large scale filaments aligned with the disk major axis and velocity coherent with the disk gas that we interpret as ongoing gas infall from the local ISM. This system appears to be an interesting case where both a star (from the environment and the disk) and a planet (from the disk) are growing in tandem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا