ﻻ يوجد ملخص باللغة العربية
We introduce a new class of Backward Stochastic Differential Equations in which the $T$-terminal value $Y_{T}$ of the solution $(Y,Z)$ is not fixed as a random variable, but only satisfies a weak constraint of the form $E[Psi(Y_{T})]ge m$, for some (possibly random) non-decreasing map $Psi$ and some threshold $m$. We name them textit{BSDEs with weak terminal condition} and obtain a representation of the minimal time $t$-values $Y_{t}$ such that $(Y,Z)$ is a supersolution of the BSDE with weak terminal condition. It provides a non-Markovian BSDE formulation of the PDE characterization obtained for Markovian stochastic target problems under controlled loss in Bouchard, Elie and Touzi cite{BoElTo09}. We then study the main properties of this minimal value. In particular, we analyze its continuity and convexity with respect to the $m$-parameter appearing in the weak terminal condition, and show how it can be related to a dual optimal control problem in Meyer form. These last properties generalize to a non Markovian framework previous results on quantile hedging and hedging under loss constraints obtained in F{o}llmer and Leukert cite{FoLe99,FoLe00}, and in Bouchard, Elie and Touzi cite{BoElTo09}.
In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochas
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The
This paper is devoted to obtaining a wellposedness result for multidimensional BSDEs with possibly unbounded random time horizon and driven by a general martingale in a filtration only assumed to satisfy the usual hypotheses, i.e. the filtration may
In this paper, we provide a one-to-one correspondence between the solution Y of a BSDE with singular terminal condition and the solution H of a BSDE with singular generator. This result provides the precise asymptotic behavior of Y close to the final
In [4], the existence of the solution is proved for a scalar linearly growing backward stochastic differential equation (BSDE) if the terminal value is $Lexp{left(mu sqrt{2log{(1+L)}},right)}$-integrable with the positive parameter $mu$ being bigger