ترغب بنشر مسار تعليمي؟ اضغط هنا

Characteristics of bright ab-type RR Lyrae stars from the ASAS and WASP surveys

118   0   0.0 ( 0 )
 نشر من قبل Marek Skarka
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marek Skarka




اسأل ChatGPT حول البحث

In this article, we present results based on high-density, high-precision Wide-Angle Search for Planets (WASP) light curves supplemented with lower-precision photometry from the All-Sky Automated Survey (ASAS) for 268 RR Lyrae stars (176 regular, 92 Blazhko). Light curves were Fourier-decomposed and coefficients from WASP were transformed to the ASAS standard using 24 common stars. Coefficients were then compared with similar data from Galactic globular clusters, the Galactic bulge and the Large and Small Magellanic Clouds (LMC and SMC). Using Fourier coefficients, we also calculated physical parameters via standard equations from the literature. We confirmed the results of previous authors, including lower amplitudes and longer rise times for Blazhko stars. It was found that in the $R_{31}$ vs. $R_{21}$ plot the location of a star depends mainly on its metallicity and that Blazhko stars prefer a different location than modulation-free stars. Field and globular-cluster RR Lyrae variables have a different $phi_{21}$ and $phi_{31}$ than stars in the LMC, SMC and in Galactic bulge. Although there are some weak indications that Blazhko stars could prefer a slightly lower metallicity and shorter periods, no convincing proof was found. The most interesting highlight is the identification of a very recently proposed new group of metal-rich RR Lyrae type stars. These low-luminous, metal-strong variables, which comprise both Blazhko and regular stars, have shorter periods and about a 180 K higher temperature at constant $(B-V)_{0}$ than the rest of the stars in the sample.

قيم البحث

اقرأ أيضاً

84 - J.M.Nemec , R.Smolec , J.M.Benko 2011
Nineteen of the ~40 RR Lyr stars in the Kepler field have been identified as candidate non-Blazhko (or unmodulated) stars. In this paper we present the results of Fourier decomposition of the time-series photometry of these stars acquired during the first 417 days of operation (Q0-Q5) of the Kepler telescope. Fourier parameters based on ~18400 long-cadence observations per star (and ~150000 short-cadence observations for FN Lyr and for AW Dra) are derived. None of the stars shows the recently discovered `period-doubling effect seen in Blazhko variables; however, KIC 7021124 has been found to pulsate simultaneously in the fundamental and second overtone modes with a period ratio P2/P0 ~ 0.59305 and is similar to the double-mode star V350 Lyr. Period change rates are derived from O-C diagrams spanning, in some cases, over 100 years; these are compared with high-precision periods derived from the Kepler data alone. Extant Fourier correlations by Kovacs, Jurcsik et al. (with minor transformations from the V to the Kp passband) have been used to derive underlying physical characteristics for all the stars. This procedure seems to be validated through comparisons of the Kepler variables with galactic and LMC RR Lyr stars. The most metal-poor star in the sample is NR Lyr, with [Fe/H]=-2.3 dex; and the four most metal-rich stars have [Fe/H] ranging from -0.6 to +0.1 dex. Pulsational luminosities and masses are found to be systematically smaller than L and mass values derived from stellar evolution models, and are favoured over the evolutionary values when periods are computed with the Warsaw linear hydrodynamics code. Finally, the Fourier parameters are compared with theoretical values derived using the Warsaw non-linear convective pulsation code.
RR Lyrae stars for a long time had the reputation of being rather simple pulsators, but the advent of high-precision space photometry has meanwhile changed this picture dramatically. This article summarizes the results obtained for two remarkable Bla zhko RR Lyrae stars and discusses how our view of RR Lyrae stars has changed since the availability of ultra-precise satellite photometry as it is obtained by CoRoT and Kepler. Both stars, CoRoT 105288363 and V445 Lyrae, show a multitude of phenomena that were impossible to observe from the ground, either because of the small amplitude of the effect, or because uninterrupted long-term monitoring was required for a detection. Not only was it found that strong and irregular cycle-to-cycle changes of the Blazhko effect can occur, and that seemingly chaotic phenomena need to be accounted for when modeling the Blazhko effect, but also a rich spectrum of low-amplitude frequencies was detected in addition to the fundamental radial pusation in RRab stars. The so-called period doubling phenomenon, higher radial overtones and possibly also non-radial modes make RR Lyrae stars more multifaceted than previously thought. This article presents the various aspects of irregularity of the Blazhko effect, questioning its long-standing definition as a periodic modulation, and also discusses the low-amplitude pulsation signatures that had been hidden in the noise of observations for centuries.
The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructu re of the Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity-light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity-light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab-type RR Lyrae located in the Kepler field, and it is found to be $[Fe/H]_{PTF} = -4.089 - 7.346 P + 1.280 phi_{31}$ (where $P$ is pulsational period and $phi_{31}$ is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118 dex. We tested our metallicity-light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that the derived metallicity-light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values.
We report the discovery of a bright (V=11.6 mag) eclipsing hot subdwarf binary of spectral type B with a late main sequence companion from the All Sky Automated Survey (ASAS 102322-3737.0). Such systems are called HW Vir stars after the prototype. Th e lightcurve shows a grazing eclipse and a strong reflection effect. An orbital period of P=0.13927 d, an inclination of i=65.86{deg}, a mass ratio q=0.34, a radial velocity semiamplitude K_1=81.0 kms^-1, and other parameters are derived from a combined spectroscopic and photometric analysis. The short period can only be explained by a common envelope origin of the system. The atmospheric parameters (T_eff=28400 K, log g=5.60) are consistent with a core helium-burning star located on the extreme horizontal branch. In agreement with that we derived the most likely sdB mass to be M_sdB=0.46M_sun, close to the canonical mass of such objects. The companion is a late M-dwarf with a mass of M_comp=0.16 M_sun. ASAS 102322-3737.0 is the third brightest of only 12 known HW Virginis systems, which makes it an ideal target for detailed spectroscopic studies and long term photometric monitoring to search for period variations, e.g. caused by a substellar companion.
77 - Horace A. Smith 2013
Mira variables, RR Lyrae variables, and type II Cepheids all represent evolved states of low-mass stars, and long term observations have revealed that changes in pulsation period occur for each of these classes of variable. Most Mira variables show s mall or no period changes, but a few show large period changes that can plausibly be associated with thermal pulses on the asymptotic red giant branch. Individual RR Lyrae stars show period changes that do not accord with the predictions of stellar evolution theory. This may be especially true for RR Lyrae stars that exhibit the Blazhko effect. However, the average period changes of all of the RR Lyrae variables within a globular cluster prove a better but still imperfect match for the predictions of evolutionary theory. The observed period changes of short period type II Cepheids (BL Her stars) as well as those of long period type II Cepheids (W Vir stars) are in broad agreement with the rates of period changes expected from their evolutionary motions through the instability strip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا