ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-modulation instability of ultra-relativistic particle bunches with finite rise times

45   0   0.0 ( 0 )
 نشر من قبل Jorge Vieira
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of the self-modulation instability using bunches with finite rise times. Using particle-in-cell simulations we show that unlike long bunches with sharp rise times, there are large variations of the wake amplitudes and wake phase velocity when bunches with finite rise times are used. These results show that use of bunches with sharp rise times is important to seed the self-modulation instability and to ensure stable acceleration regimes.

قيم البحث

اقرأ أيضاً

We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude ($ge(4.1pm0.4)$ MV/m), the phas e of the modulation along the bunch is reproducible from event to event, with 3 to 7% (of 2$pi$) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.
98 - K.V. Lotov 2016
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wake fields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles whic h depend on the ratios of droplet radius to wavelength and plasma frequency to laser frequency. The mechanism behind the multi-MeV attosecond electron bunch generation is investigated using Mie theory. It is shown that the angular distribution and the high electron energies are due to a parameter-sensitive, time-dependent local field enhancement at the droplet surface.
Plasma-based accelerators sustain accelerating gradients which are several orders greater than obtained in conventional accelerators. Focusing of electron and positron beams by wakefield, excited in plasma, in electron-positron collider is very impor tant. The focusing mechanism in the plasma, in which all electron bunches of a sequence are focused identically, has been proposed by authors earlier. The mechanism of focusing of a sequence of relativistic positron bunches in plasma, in which all positron bunches of sequence are focused identically and uniformly, has been investigated in this paper by numerical simulation by 2.5D code LCODE. We numerically simulate the self-consistent radial dynamics of lengthy positron bunches in homogeneous plasma. In simulation we use the hydrodynamic description of plasma. In other words, the plasma is considered to be cold electron liquid, and positron bunches are aggregate of macroparticles. Positron bunches are considered to be homogeneous cylinders in the longitudinal direction. Positrons in bunches are distributed in radial direction according to Gaussian distribution. It is shown that in this case only first bunch is in the finite longitudinal electrical wakefield notequal to zero. Other bunches are in zero longitudinal electrical wakefield Ez=0. Between bunches of this sequence longitudinal electrical wakefield and radial force are not zero. The focusing radial force in regions, occupied by bunches, is constant along each bunch Fr=const. Between bunches the radial force is inhomogeneous. All positron bunches of sequence are focused identically and uniformly.
We use 3D simulations to demonstrate that high-quality ultra-relativistic electron bunches can be generated upon reflection of a twisted laser beam off a plasma mirror. The unique topology of the beam with a twist index $|l| = 1$ creates an accelerat ing structure dominated by longitudinal laser electric and magnetic fields in the near-axis region. We show that the magnetic field is essential for creating a train of dense mono-energetic bunches. For a 6.8~PW laser, the energy reaches 1.6~GeV with a spread of 5.5%. The bunch duration is 320 as, its charge is 60~pC and density is $sim 10^{27}$~m$^{-3}$. The results are confirmed by an analytical model for the electron energy gain. These results enable development of novel laser-driven accelerators at multi-PW laser facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا