ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of ultra-relativistic monoenergetic electron bunches via a synergistic interaction of longitudinal electric and magnetic fields of a twisted laser

125   0   0.0 ( 0 )
 نشر من قبل Yin Shi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 3D simulations to demonstrate that high-quality ultra-relativistic electron bunches can be generated upon reflection of a twisted laser beam off a plasma mirror. The unique topology of the beam with a twist index $|l| = 1$ creates an accelerating structure dominated by longitudinal laser electric and magnetic fields in the near-axis region. We show that the magnetic field is essential for creating a train of dense mono-energetic bunches. For a 6.8~PW laser, the energy reaches 1.6~GeV with a spread of 5.5%. The bunch duration is 320 as, its charge is 60~pC and density is $sim 10^{27}$~m$^{-3}$. The results are confirmed by an analytical model for the electron energy gain. These results enable development of novel laser-driven accelerators at multi-PW laser facilities.

قيم البحث

اقرأ أيضاً

It is shown that electrons with momenta exceeding the `free electron limit of $m_eca_0^2/2$ can be produced when a laser pulse and a longitudinal electric field interact with an electron via a non-wakefield mechanism. The mechanism consists of two st ages: the reduction of the electron dephasing rate $gamma-p_x/m_ec$ by an accelerating region of electric field and electron acceleration by the laser via the Lorentz force. This mechanism can, in principle, produce electrons that have longtudinal momenta that is a significant multiple of $m_eca_0^2/2$. 2D PIC simulations of a relatively simple laser-plasma interaction indicate that the generation of super-ponderomotive electrons is strongly affected by this `anti-dephasing mechanism.
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles whic h depend on the ratios of droplet radius to wavelength and plasma frequency to laser frequency. The mechanism behind the multi-MeV attosecond electron bunch generation is investigated using Mie theory. It is shown that the angular distribution and the high electron energies are due to a parameter-sensitive, time-dependent local field enhancement at the droplet surface.
308 - K. D. Xiao , C. T. Zhou , H. Zhang 2018
Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten k ilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of important applications, which include controlling the divergence of laser-driven energetic particles for medical treatment, fast-ignition in inertial fusion, etc., as an example, the well focused and confined directional electron beams are realized by using the solenoid target.
We present the results of 3-dimensional kinetic simulations and theoretical studies on the formation and evolution of the current sheet in a collisionless plasma during magnetic field annihilation in the ultra-relativistic limit. Annihilation of oppo sitively directed magnetic fields driven by two laser pulses interacting with underdense plasma target is accompanied by an electromagnetic burst generation. The induced strong non-stationary longitudinal electric field accelerates charged particles within the current sheet. Properties of the laser-plasma target configuration are discussed in the context of the laboratory modeling for charged particle acceleration and gamma flash generation in astrophysics.
Laser-plasma electron accelerators can be used to produce high-intensity X-rays, as electrons accelerated in wakefields emit radiation due to betatron oscillations.Such X-ray sources inherit the features of the electron beam; sub-femtosecond electron bunches produce betatron sources of the same duration, which in turn allow probing matter on ultrashort time scales. In this paper we show, via Particle-in-Cell simulations, that attosecond electron bunches can be obtained using low-energy, ultra-short laser beams both in the self-injection and the controlled injection regimes at low plasma densities. However, only in the controlled regime does the electron injection lead to a stable, isolated attosecond electron bunch. Such ultrashort electron bunches are shown to emit attosecond X-ray bursts with high brilliance
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا