ﻻ يوجد ملخص باللغة العربية
The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newtons second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.
This paper brings further insight into the recently published N-body description of Debye shielding and Landau damping [Escande D F, Elskens Y and Doveil F 2014 Plasma Phys. Control. Fusion 57 025017]. Its fundamental equation for the electrostatic p
We discuss the self-consistent dynamics of plasmas by means of hamiltonian formalism for a system of $N$ near-resonant electrons interacting with a single Langmuir wave. The connection with the Vlasov description is revisited through the numerical ca
The effective potential acting on particles in plasmas being essentially the Debye-shielded Coulomb potential, the particles collisional transport in thermal equilibrium is calculated for all impact parameters $b$, with a convergent expression reduci
Computing is not understanding. This is exemplified by the multiple and discordant interpretations of Landau damping still present after seventy years. For long deemed impossible, the mechanical N-body description of this damping, not only enables it
Starting from the Wigner-Moyal equation coupled to Poissons equation, a simplified set of equations describing nonlinear Landau damping of Langmuir waves is derived. This system is studied numerically, with a particular focus on the transition from t