ﻻ يوجد ملخص باللغة العربية
This paper brings further insight into the recently published N-body description of Debye shielding and Landau damping [Escande D F, Elskens Y and Doveil F 2014 Plasma Phys. Control. Fusion 57 025017]. Its fundamental equation for the electrostatic potential is derived in a simpler and more rigorous way. Various physical consequences of the new approach are discussed, and this approach is compared with the seminal one by Pines and Bohm [Pines D and Bohm D 1952 Phys. Rev. 85 338--353].
The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newtons second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of
The effective potential acting on particles in plasmas being essentially the Debye-shielded Coulomb potential, the particles collisional transport in thermal equilibrium is calculated for all impact parameters $b$, with a convergent expression reduci
To model momentum exchange in nonlinear wave-particle interaction, as in amplification devices like traveling-wave tubes, we use an $N$-body self-consistent hamiltonian description based on Kuznetsovs discrete model, and we provide new formulations f
We discuss the self-consistent dynamics of plasmas by means of hamiltonian formalism for a system of $N$ near-resonant electrons interacting with a single Langmuir wave. The connection with the Vlasov description is revisited through the numerical ca
Kinetic treatments of drift-tearing modes that match an inner resonant layer solution to an external MHD region solution, characterised by $Delta^{prime}$, fail to properly match the ideal MHD boundary condition on the parallel electric field, $E_{pa