ﻻ يوجد ملخص باللغة العربية
With the use of two kinds of boson operators, a new boson representation of the su(2)-algebra is proposed. The basic idea comes from the pseudo su(1,1)-algebra recently given by the present authors. It forms a striking contrast to the Schwinger boson representation of the su(2)-algebra which is also based on two kinds of bosons. This representation may be suitable for describing time-dependence of the system interacting with the external environment in the framework of the thermo field dynamics formalism, i.e., the phase space doubling. Further, several deformations related to the su(2)-algebra in this boson representation are discussed. On the basis of these deformed algebra, various types of time-evolution of a simple boson system are investigated.
New boson representation of the su(2)-algebra proposed by the present authors for describing the damped and amplified oscillator is examined in the Lipkin model as one of simple many-fermion models. This boson representation is expressed in terms of
The su(2)-algebraic model interacting with an environment is investigated from a viewpoint of treating the dissipative system. By using the time-dependent variational approach with a coherent state and with the help of the canonicity condition, the t
We study a possibility of the Higgs boson, which consists of an SU(2) doublet and a septet. The vacuum expectation value of a septet with hypercharge Y=2 is known to preserve the electroweak rho parameter unity at the tree level. Therefore, the septe
An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrabl
Let ${cal Z}$ be the Jiang-Su algebra and ${cal K}$ the C*-algebra of compact operators on an infinite dimensional separable Hilbert space. We prove that the corona algebra $M({cal Z}otimes {cal K})/{cal Z}otimes {cal K}$ has real rank zero. We actually prove a more general result.