ترغب بنشر مسار تعليمي؟ اضغط هنا

A representation basis for the quantum integrable spin chain associated with the su(3) algebra

153   0   0.0 ( 0 )
 نشر من قبل Jun-Peng Cao
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrable models. It is found that all the monodromy-matrix elements acting on a basis vector take simple forms. With the help of the basis, we construct eigenstates of the su(3) inhomogeneous spin torus (the trigonometric su(3) spin chain with antiperiodic boundary condition) from its spectrum obtained via the off-diagonal Bethe Ansatz (ODBA). Based on small sites (i.e. N=2) check, it is conjectured that the homogeneous limit of the eigenstates exists, which gives rise to the corresponding eigenstates of the homogenous model.



قيم البحث

اقرأ أيضاً

133 - Pei Sun , Zhirong Xin , Yi Qiao 2017
By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU(3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T-Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities amon g the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the $SU_q(n)$ algebra.
The graded off-diagonal Bethe ansatz method is proposed to study supersymmetric quantum integrable models (i.e., quantum integrable models associated with superalgebras). As an example, the exact solutions of the $SU(2|2)$ vertex model with both peri odic and generic open boundary conditions are constructed. By generalizing the fusion techniques to the supersymmetric case, a closed set of operator product identities about the transfer matrices are derived, which allows us to give the eigenvalues in terms of homogeneous or inhomogeneous $T-Q$ relations. The method and results provided in this paper can be generalized to other high rank supersymmetric quantum integrable models.
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the $sp(4)$ (or $C_2$) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These relations, together with some asymptotic behaviors and values of the transfer matrices at certain points, enable us to determine the eigenvalues of the transfer matrices completely. For the periodic boundary condition case, we recover the same $T-Q$ relations obtained via conventional Bethe ansatz methods previously, while for the off-diagonal boundary condition case, the eigenvalues are given in terms of inhomogeneous $T-Q$ relations, which could not be obtained by the conventional Bethe ansatz methods. The method developed in this paper can be directly generalized to generic $sp(2n)$ (i.e., $C_n$) integrable model.
Based on the inhomogeneous T-Q relation and the associated Bethe Ansatz equations obtained via the off-diagonal Bethe Ansatz, we construct the Bethe-type eigenstates of the SU(2)-invariant spin-s chain with generic non-diagonal boundaries by employing certain orthogonal basis of the Hilbert space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا