ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures

244   0   0.0 ( 0 )
 نشر من قبل Paul Evans
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions presents a significant challenge in quantum device development. We report synchrotron x-ray nanodiffraction measurements combined with dynamical x-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04 deg. and strain on the order of 10^-4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.

قيم البحث

اقرأ أيضاً

We demonstrate a scheme for optically patterning nuclear spin polarization in semiconductor/ferromagnet heterostructures. A scanning time-resolved Kerr rotation microscope is used to image the nuclear spin polarization that results when GaAs/MnAs epi layers are illuminated with a focused laser having a Gaussian profile. Rather than tracking the intensity profile of the laser spot, these images reveal that the nuclear polarization forms an annular lateral structure having circular symmetry with a dip rather than a peak at its center.
154 - Mahdi Hajlaoui 2021
Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their elec tronic structure. So far, the most commonly used experimental techniques for this purpose have been all-optical spectroscopy methods that, however, are generally averaged in momentum space. Additional information can be gained by angle-resolved photoelectron spectroscopy (ARPES), which measures the electronic structure with momentum resolution. Here we report on the use of extremely low energy ARPES (photon energy $sim$ 7 eV) to increase its depth sensitivity and access buried QW states, located at 3 nm and 6 nm below the surface of cubic-GaN/AlN and GaAs/AlGaAs heterostructures, respectively. We find that the QW states in cubic-GaN/AlN can indeed be observed, but not their energy dispersion because of the high surface roughness. The GaAs/AlGaAs QW states, on the other hand, are buried too deep to be detected by extremely low energy ARPES. Since the sample surface is much flatter, the ARPES spectra of the GaAs/AlGaAs show distinct features in momentum space, which can be reconducted to the band structure of the topmost surface layer of the QW structure. Our results provide important information about the samples properties required to perform extremely low energy ARPES experiments on electronic states buried in semiconductor heterostructures.
The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is supe rior to silicon as it has a direct band gap of 1.42 eV and its electron mobility is six times of that of silicon. However, graphene/GaAs solar cell has been rarely explored. Herein, we report graphene/GaAs solar cells with conversion efficiency (Eta) of 10.4% and 15.5% without and with anti-reflection layer on graphene, respectively. The Eta of 15.5% is higher than the state of art efficiency for graphene/Si system (14.5%). Furthermore, our calculation points out Eta of 25.8% can be reached by reasonably optimizing the open circuit voltage, junction ideality factor, resistance of graphene and metal/graphene contact. This research strongly support graphene/GaAs hetero-structure solar cell have great potential for practical applications.
The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily-measured quantum process whose transition statistics cannot be explained by Fermis Golden Rule. Commonly, the transition statistics are power-law di stributed, implying that quantum dots possess at least trivial memories. By investigating the temporal correlations in the blinking data, we demonstrate with high statistical confidence that quantum dot blinking data has non-trivial memory, which we define to be statistical complexity greater than one. We show that this memory cannot be discovered using the transition distribution. We show by simulation that this memory does not arise from standard data manipulations. Finally, we conclude that at least three physical mechanisms can explain the measured non-trivial memory: 1) Storage of state information in the chemical structure of a quantum dot; 2) The existence of more than two intensity levels in a quantum dot; and 3) The overlap in the intensity distributions of the quantum dot states, which arises from fundamental photon statistics.
189 - C. Bardot , M. Schwab , M. Bayer 2005
The exciton lifetimes $T_1$ in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of $T_1$ by up to a factor of $sim$ 2 has been observed as compared to a quantum d ots reference, reflecting the inter-dot coherence. Increase of the molecular coupling strength leads to a systematic decrease of $T_1$ with decreasing barrier width, as for wide barriers a fraction of structures shows reduced coupling while for narrow barriers all molecules appear to be well coupled. The coherent excitons in the molecules gain the oscillator strength of the excitons in the two separate quantum dots halving the exciton lifetime. This superradiance effect contributes to the previously observed increase of the homogeneous exciton linewidth, but is weaker than the reduction of $T_2$. This shows that as compared to the quantum dots reference pure dephasing becomes increasingly important for the molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا