ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mid-infrared E-ELT Imager and Spectrograph (METIS)

143   0   0.0 ( 0 )
 نشر من قبل Bernhard Brandl
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14um over an 20x20 field of view, as well as integral field spectroscopy at R ~ 100,000 from 2.9-5.3um. In addition, METIS provides medium-resolution (R ~ 5000) long slit spectroscopy, and polarimetric measurements at N band. While the baseline concept has already been discussed, this paper focuses on the significant developments over the past two years in several areas: The science case has been updated to account for recent progress in the main science areas circum-stellar disks and the formation of planets, exoplanet detection and characterization, Solar system formation, massive stars and clusters, and star formation in external galaxies. We discuss the developments in the adaptive optics (AO) concept for METIS, the telescope interface, and the instrument modelling. Last but not least, we provide an overview of our technology development programs, which ranges from coronagraphic masks, immersed gratings, and cryogenic beam chopper to novel approaches to mirror polishing, background calibration and cryo-cooling. These developments have further enhanced the design and technology readiness of METIS to reliably serve as an early discovery machine on the E-ELT.



قيم البحث

اقرأ أيضاً

The Mid-infrared ELT Imager and Spectrograph (METIS) will provide the Extremely Large Telescope (ELT) with a unique window to the thermal- and mid-infrared (3 - 13 microns). Its single-conjugate adaptive optics (SCAO) system will enable high contrast imaging and integral field unit (IFU) spectroscopy (R~100,000) at the diffraction limit of the ELT. This article describes the science drivers, conceptual design, observing modes, and expected performance of METIS.
METIS, the Mid-infrared ELT Imager and Spectrograph (formerly called MIDIR), is a proposed instrument for the European Extremely Large Telescope (E-ELT), currently undergoing a phase-A study. The study is carried out within the framework of the ESO-s ponsored E-ELT instrumentation studies. METIS will be designed to cover the E-ELT science needs at wavelengths longward of 3um, where the thermal background requires different operating schemes. In this paper we discuss the main science drivers from which the instrument baseline has been derived. Specific emphasis has been given to observations that require very high spatial and spectral resolution, which can only be achieved with a ground-based ELT. We also discuss the challenging aspects of background suppression techniques, adaptive optics in the mid-IR, and telescope site considerations. The METIS instrument baseline includes imaging and spectroscopy at the atmospheric L, M, and N bands with a possible extension to Q band imaging. Both coronagraphy and polarimetry are also being considered. However, we note that the concept is still not yet fully consolidated. The METIS studies are being performed by an international consortium with institutes from the Netherlands, Germany, France, United Kingdom, and Belgium.
202 - Sascha P. Quanz 2014
We quantify the scientific potential for exoplanet imaging with the Mid-infrared E-ELT Imager and Spectrograph (METIS) foreseen as one of the instruments of the European Extremely Large Telescope (E-ELT). We focus on two main science cases: (1) the d irect detection of known gas giant planets found by radial velocity (RV) searches; and (2) the direct detection of small (1 - 4 R_earth) planets around the nearest stars. Under the assumptions made in our modeling, in particular on the achievable inner working angle and sensitivity, our analyses reveal that within a reasonable amount of observing time METIS is able to image >20 already known, RV-detected planets in at least one filter. Many more suitable planets with dynamically determined masses are expected to be found in the coming years with the continuation of RV-surveys and the results from the GAIA astrometry mission. In addition, by extrapolating the statistics for close-in planets found by emph{Kepler}, we expect METIS might detect ~10 small planets with equilibrium temperatures between 200 - 500 K around the nearest stars. This means that (1) METIS will help constrain atmospheric models for gas giant planets by determining for a sizable sample their luminosity, temperature and orbital inclination; and (2) METIS might be the first instrument to image a nearby (super-)Earth-sized planet with an equilibrium temperature near that expected to enable liquid water on a planet surface.
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instruments observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. The re is also a single object spectroscopic mode optimised for wavelength coverage at moderately high resolution. This contribution provides an overview of the key functionality of the instrument, outlining the scientific rationale for its observing modes. The interface between MICADO and the adaptive optics system MAORY that feeds it is summarised. The design of the instrument is discussed, focussing on the optics and mechanisms inside the cryostat, together with a brief overview of the other key sub-systems.
The first generation of E-ELT instruments will include an optical-infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet form ation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا