ﻻ يوجد ملخص باللغة العربية
METIS, the Mid-infrared ELT Imager and Spectrograph (formerly called MIDIR), is a proposed instrument for the European Extremely Large Telescope (E-ELT), currently undergoing a phase-A study. The study is carried out within the framework of the ESO-sponsored E-ELT instrumentation studies. METIS will be designed to cover the E-ELT science needs at wavelengths longward of 3um, where the thermal background requires different operating schemes. In this paper we discuss the main science drivers from which the instrument baseline has been derived. Specific emphasis has been given to observations that require very high spatial and spectral resolution, which can only be achieved with a ground-based ELT. We also discuss the challenging aspects of background suppression techniques, adaptive optics in the mid-IR, and telescope site considerations. The METIS instrument baseline includes imaging and spectroscopy at the atmospheric L, M, and N bands with a possible extension to Q band imaging. Both coronagraphy and polarimetry are also being considered. However, we note that the concept is still not yet fully consolidated. The METIS studies are being performed by an international consortium with institutes from the Netherlands, Germany, France, United Kingdom, and Belgium.
METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14um over an 20x20 field of v
The Mid-infrared ELT Imager and Spectrograph (METIS) will provide the Extremely Large Telescope (ELT) with a unique window to the thermal- and mid-infrared (3 - 13 microns). Its single-conjugate adaptive optics (SCAO) system will enable high contrast
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instruments observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. The
The first generation of E-ELT instruments will include an optical-infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet form
There are 8000 galaxies, including 1600 at z larger than 1.6, which could be simultaneously observed in an E-ELT field of view of 40 sq. arcmin. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be