ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying orbital angular momentum of vectorial vortices with Pancharatnam phase and Stokes parameters

190   0   0.0 ( 0 )
 نشر من قبل Dengke Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, an explicit formula is deduced for identifying the orbital angular moment (OAM) of vectorial vortex with space-variant state of polarization (SOP). Different to scalar vortex, the OAM of vectorial vortex can be attributed to two parts: the azimuthal gradient of Pancharatnam phase and the product of the azimuthal gradient of orientation angle of SOP and relevant solid angle on the Poincar{e} sphere. With our formula, a geometrical description for OAM of light beams can be achieved under the framework of the traditional Poincar{e} sphere. Numerical simulations for two types of vectorial vortices have been carried on to confirm our presented formula and demonstrate the geometrical description of OAM. Furthermore, the finding will pave the way for precise characterization of OAM charge of vectorial vortices.



قيم البحث

اقرأ أيضاً

Parallel sorting of orbital angular momentum (OAM) and polarization has recently acquired paramount importance and interest in a wide range of fields ranging from telecommunications to high-dimensional quantum cryptography. Due to their inherently po larization-sensitive optical response, optical elements acting on the geometric phase prove to be useful for processing structured light beams with orthogonal polarization states by means of a single optical platform. In this work, we present the design, fabrication and test of a Pancharatnam-Berry optical element in silicon implementing a log-pol optical transformation at 1310 nm for the realization of an OAM sorter based on the conformal mapping between angular and linear momentum states. The metasurface is realized in the form of continuously-variant subwavelength gratings, providing high-resolution in the definition of the phase pattern. A hybrid device is fabricated assembling the metasurface for the geometric phase control with multi-level diffractive optics for the polarization-independent manipulation of the dynamic phase. The optical characterization confirms the capability to sort orbital angular momentum and circular polarization at the same time.
Lights orbital angular momentum (OAM) is an unbounded degree of freedom emerging in helical beams that appears very advantageous technologically. Using a chiral microlaser, i.e. an integrated device that allows generating an emission carrying a net O AM, we demonstrate a regime of bistability involving two modes presenting distinct OAM (L = 0 and L = 2). Furthermore, thanks to an engineered spin-orbit coupling of light in the device, these modes also exhibit distinct polarization patterns, i.e. cirular and azimuthal polarizations. Using a dynamical model of rate euqations, we show that this bistability arises from polarization-dependent saturation of the gain medium. Such a bistable regime appears very promising for implementing ultrafast optical switches based on the OAM of light. As well, it paves the way to the exploration of dynamical processes involving phase and polarization vortices.
Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependen t unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomposition and are found to depend on the chiralities of both the source and surface states. These findings allow for the engineering control of the unidirectional propagation of electromagnetic energy without requiring an ancillary cladding layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends. It turns out that although only certain states successfully pass through the bend, the unidirectional propagation is well maintained due to the topology of the structure.
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here we introduce the reflection from structural boundaries as a new degree of free dom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatio-temporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved Photoemission Electron Microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices, could miniaturize pump-probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers and potentially achieve vortex lattice cavities with dynamically evolving topology.
134 - Wei Chen , Wang Zhang , Yuan Liu 2021
Recently, photons have been observed to possess transverse orbital angular momentum (OAM); however, it is unclear as whether they can hold a transverse OAM higher than 1. Here, we theoretically and experimentally demonstrate that high-order spatiotem poral Bessel optical vortices (STBOVs) can stably carry transverse OAM even beyond $10^2$. Through the inverse design of the spiral phase, an STBOV of any order can be controllably generated using a 4f pulse shaper. In contrast to conventional longitudinal OAM, the vector direction of the transverse OAM can be distinguished by the unique time-symmetrical evolution of STBOVs. More interestingly, the stability of STBOVs improves with their increasing orders owing to enhanced space-time coupling, making these beams particularly suitable for the generation of ultra-high transverse OAM. Our work paves the way for further research and application of this unique OAM of photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا