ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of robust spatiotemporal optical vortices with transverse orbital angular momentum beyond $10^2$

135   0   0.0 ( 0 )
 نشر من قبل Yan-qing Lu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, photons have been observed to possess transverse orbital angular momentum (OAM); however, it is unclear as whether they can hold a transverse OAM higher than 1. Here, we theoretically and experimentally demonstrate that high-order spatiotemporal Bessel optical vortices (STBOVs) can stably carry transverse OAM even beyond $10^2$. Through the inverse design of the spiral phase, an STBOV of any order can be controllably generated using a 4f pulse shaper. In contrast to conventional longitudinal OAM, the vector direction of the transverse OAM can be distinguished by the unique time-symmetrical evolution of STBOVs. More interestingly, the stability of STBOVs improves with their increasing orders owing to enhanced space-time coupling, making these beams particularly suitable for the generation of ultra-high transverse OAM. Our work paves the way for further research and application of this unique OAM of photons.

قيم البحث

اقرأ أيضاً

Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polar ization and an orbital angular momentum (OAM) owing to the azimuthally dependent phase. Even though such angular momenta are longitudinal in general, a SAM transverse to the propagation has opened up a variety of key applications [1]. In contrast, investigations of the transverse OAM are quite rare due to its complex nature. Here we demonstrate a simple method to generate a three dimensional (3D) optical wave packet with a controllable purely transverse OAM. Such a wave packet is a spatiotemporal (ST) vortex, which resembles an advancing cyclone, with optical energy flowing in the spatial and temporal dimension. Contrary to the transverse SAM, the magnitude of the transverse OAM carried by the photonic cyclone is scalable to a larger value by simple adjustments. Since the ST vortex carries a controllable OAM in the unique transverse dimension, it has a strong potential for novel applications that may not be possible otherwise. The scheme reported here can be readily adapted for the other spectra regime and different wave fields, opening tremendous opportunities for the study and applications of ST vortex in much broader scopes.
As a new degree of freedom for optical manipulation, recently spatiotemporal optical vortices (STOVs) carrying transverse orbital angular momentums have been experimentally demonstrated with bulky optical systems. Here we propose a spatiotemporal dif ferentiator to generate STOVs with pure transverse orbital angular momentum. In order to create phase singularity in the spatiotemporal domain, we design a spatiotemporal differentiator by breaking spatial mirror symmetry. In contrast to the complex bulky systems, the device we propose here is a simple one-dimensional periodic nanostructure and thus it is much more compact. We show that for a normal incident pulse, the differentiator generates a transmitted STOV pulse with transverse orbital angular momentum. Furthermore, we demonstrate that the interference of the generated STOVs can be used to detect the sharp changes of pulse envelopes, in both spatial and temporal dimensions.
Recently, a spatiotemporal optical vortex (STOV) with a transverse orbital angular momentum (OAM) has been generated from coherent ultrafast pulses using mode-locked lasers. In contrast, we demonstrate theoretically and experimentally that a STOV can be generated from a light source with partial temporal coherence with fluctuating temporal phase. By eliminating the need of mode-locked laser sources, the partially coherent STOV will serve as a convenient and cost-effective transverse OAM source.
Light with spatiotemporal orbital angular momentum (ST-OAM) is a recently discovered type of structured and localized electromagnetic field. This field carries characteristic space-time spiral phase structure and transverse intrinsic OAM. In this wor k, we present the generation and characterization of the second-harmonic of ST-OAM pulses. We uncovered the conservation of transverse OAM in a second-harmonic generation process, where the space-time topological charge of the fundamental field is doubled along with the optical frequency. Our experiment thus suggests a general ST-OAM nonlinear scaling rule - analogous to that in conventional OAM of light. Furthermore, we observe that the topology of a second-harmonic ST-OAM pulse can be modified by complex spatiotemporal astigmatism, giving rise to multiple phase singularities separated in space and time. Our study opens a new route for nonlinear conversion and scaling of light carrying ST-OAM with the potential for driving other secondary ST-OAM sources of electromagnetic fields and beyond.
In this work, an explicit formula is deduced for identifying the orbital angular moment (OAM) of vectorial vortex with space-variant state of polarization (SOP). Different to scalar vortex, the OAM of vectorial vortex can be attributed to two parts: the azimuthal gradient of Pancharatnam phase and the product of the azimuthal gradient of orientation angle of SOP and relevant solid angle on the Poincar{e} sphere. With our formula, a geometrical description for OAM of light beams can be achieved under the framework of the traditional Poincar{e} sphere. Numerical simulations for two types of vectorial vortices have been carried on to confirm our presented formula and demonstrate the geometrical description of OAM. Furthermore, the finding will pave the way for precise characterization of OAM charge of vectorial vortices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا