ﻻ يوجد ملخص باللغة العربية
We study charge transport in a graphene zigzag nanoribbon driven by an external time-periodic kicking potential. Using the exact solution of the time-dependent Dirac equation with a delta-kick potential acting in each period, we study the time evolution of the quasienergy levels and the time-dependent optical conductivity. By variation of the kicking parameters, the conductivity becomes widely tunable.
We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of be
We calculate quantum transport for metal-graphene nanoribbon heterojunctions within the atomistic self-consistent Schrodinger/Poisson scheme. Attention is paid on both the chemical aspects of the interface bonding as well the one-dimensional electros
As a critical way to modulate thermal transport in nanostructures, phonon resonance hybridization has become an issue of great concern in the field of phonon engineering. In this work, we optimized phonon transport across graphene nanoribbon and obta
We calculate current, spin current and tunnel magnetoresistance (TMR) for a quantum dot coupled to ferromagnetic leads in the presence of a square wave of bias voltage. Our results are obtained via time-dependent nonequilibrium Green function. Both p
We investigate generation of exchange magnons by ultrashort, picosecond acoustic pulses propagating through ferromagnetic thin films. Using the Landau-Lifshitz-Gilbert equations we derive the dispersion relation for exchange magnons for an external m