ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward the Detection of Exoplanet Transits with Polarimetry

342   0   0.0 ( 0 )
 نشر من قبل Sloane Wiktorowicz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the $90^circ$ scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio $R_{rm p} / R_*$, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3-m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.



قيم البحث

اقرأ أيضاً

A machine learning technique with two-dimension convolutional neural network is proposed for detecting exoplanet transits. To test this new method, five different types of deep learning models with or without folding are constructed and studied. The light curves of the Kepler Data Release 25 are employed as the input of these models. The accuracy, reliability, and completeness are determined and their performances are compared. These results indicate that a combination of two-dimension convolutional neural network with folding would be an excellent choice for the future transit analysis.
We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sa mple of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the S/N of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (+/-6000) high-mass (1-15M_J) long-period planets should be discovered out to distances of ~500pc for the nominal 5-yr mission (including at least 1000-1500 around M dwarfs out to 100pc), rising to some 70,000 (+/-20,000) for a 10-yr mission. We indicate some of the expected features of this exoplanet population, amongst them ~25-50 intermediate-period (P~2-3yr) transiting systems.
132 - T. Karalidi , D.M. Stam , F. Snik 2012
The detections of small, rocky exoplanets have surged in recent years and will likely continue to do so. To know whether a rocky exoplanet is habitable, we have to characterise its atmosphere and surface. A promising characterisation method for rocky exoplanets is direct detection using spectropolarimetry. This method will be based on single pixel signals, because spatially resolving exoplanets is impossible with current and near-future instruments. Well-tested retrieval algorithms are essential to interpret these single pixel signals in terms of atmospheric composition, cloud and surface coverage. Observations of Earth itself provide the obvious benchmark data for testing such algorithms. The observations should provide signals that are integrated over the Earths disk, that capture day and night variations, and all phase angles. The Moon is a unique platform from where the Earth can be observed as an exoplanet, undisturbed, all of the time. Here, we present LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth, a small and robust spectropolarimeter to observe our Earth as an exoplanet.
We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to ma p out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Reaching these ambitious goals will require further improvements in instrumentation and new analysis tools. In this chapter, we provide an overview of five observational techniques that are currently employed in the detection of exoplanets: optical and IR Doppler measurements, transit photometry, direct imaging, microlensing, and astrometry. We provide a basic description of how each of these techniques works and discuss forefront developments that will result in new discoveries. We also highlight the observational limitations and synergies of each method and their connections to future space missions.
Given the forthcoming launch of the James Webb Space Telescope (JWST) which will allow observ- ing exoplanet atmospheres with unprecedented signal-over-noise ratio, spectral coverage and spatial resolution, the uncertainties in the atmosphere modelli ng used to interpret the data need to be as- sessed. As the first step, we compare three independent 1D radiative-convective models: ATMO, Exo-REM and petitCODE. We identify differences in physical and chemical processes taken into ac- count thanks to a benchmark protocol we developed. We study the impact of these differences on the analysis of observable spectra. We show the importance of selecting carefully relevant molecular linelists to compute the atmospheric opacity. Indeed, differences between spectra calculated with Hitran and ExoMol exceed the expected uncertainties of future JWST observations. We also show the limitation in the precision of the models due to uncertainties on alkali and molecule lineshape, which induce spectral effects also larger than the expected JWST uncertainties. We compare two chemical models, Exo-REM and Venot Chemical Code, which do not lead to significant differences in the emission or transmission spectra. We discuss the observational consequences of using equilibrium or out-of- equilibrium chemistry and the major impact of phosphine, detectable with the JWST.Each of the models has benefited from the benchmarking activity and has been updated. The protocol developed in this paper and the online results can constitute a test case for other models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا