ﻻ يوجد ملخص باللغة العربية
We mini-review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, dark energy, and inflation. Among these, here we focus on the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment briefly on the panoply of the other roles of spin-0 bosons.
The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a numbe
We study a Dark Matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal i
The thermal decoupling description of dark matter (DM) and co-annihilating partners is reconsidered. If DM is realized at around the TeV-mass region or above, even the heaviest electroweak force carriers could act as long-range forces, leading to the
Higgsplosion is a dynamical mechanism that introduces an exponential suppression of quantum fluctuations beyond the Higgsplosion energy scale E_* and further guarantees perturbative unitarity in multi-Higgs production processes. By calculating the Hi
We present a testable mechanism of low-scale baryogenesis and dark matter production in which neither baryon nor lepton number are violated. Charged $D$ mesons are produced out-of-equilibrium at tens of MeV temperatures. The $D$ mesons quickly underg