ﻻ يوجد ملخص باللغة العربية
The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most 0.5% of the dark matter could be coupled to neutrinos in this way.
Non-standard interactions (NSI) of neutrinos with matter mediated by a scalar field would induce medium-dependent neutrino masses which can modify oscillation probabilities. Generating observable effects requires an ultra-light scalar mediator. We de
We mini-review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, dark energy, and infl
Neutrino Self-Interactions ($ u$SI) beyond the Standard Model are an attractive possibility to soften cosmological constraints on neutrino properties and also to explain the tension in late and early time measurements of the Hubble expansion rate. Th
We study a Dark Matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal i
The thermal decoupling description of dark matter (DM) and co-annihilating partners is reconsidered. If DM is realized at around the TeV-mass region or above, even the heaviest electroweak force carriers could act as long-range forces, leading to the