ترغب بنشر مسار تعليمي؟ اضغط هنا

Advances in exoplanet science from Kepler

256   0   0.0 ( 0 )
 نشر من قبل Scott Tremaine
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASAs Kepler Space Telescope. Kepler has discovered the majority of known exoplanets, the smallest planets to orbit normal stars, and the worlds most likely to be similar to our home planet. Most importantly, Kepler has provided our first look at typical characteristics of planets and planetary systems for planets with sizes as small as and orbits as large as those of the Earth.



قيم البحث

اقرأ أيضاً

Keplers primary mission is a search for earth-size exoplanets in the habitable zone of late-type stars using the transit method. To effectively accomplish this mission, Kepler orbits the Sun and stares nearly continuously at one field-of-view which w as carefully selected to provide an appropriate density of target stars. The data transmission rates, operational cycles, and target management requirements implied by this mission design have been optimized and integrated into a comprehensive plan for science operations. The commissioning phase completed all critical tasks and accomplished all objectives within a week of the pre-launch plan. Since starting science, the nominal data collection timeline has been interrupted by two safemode events, several losses of fine point, and some small pointing adjustments. The most important anomalies are understood and mitigated, so Keplers technical performance metrics have improved significantly over this period and the prognosis for mission success is excellent. The Kepler data archive is established and hosting data for the science team, guest observers, and public. The first data sets to become publicly available include the monthly full-frame images, dropped targets, and individual sources as they are published. Data are released through the archive on a quarterly basis; the Kepler Results Catalog will be released annually starting in 2011.
The nearly circular (mean eccentricity <e>~0.06) and coplanar (mean mutual inclination <i>~3 deg) orbits of the Solar System planets motivated Kant and Laplace to put forth the hypothesis that planets are formed in disks, which has developed into the widely accepted theory of planet formation. Surprisingly, the first several hundred extrasolar planets (mostly Jovian) discovered using the Radial Velocity (RV) technique are commonly on eccentric orbits (<e> ~ 0.3). This raises a fundamental question: Are the Solar System and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the LAMOST observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), while the other half are multiple-transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with <e>~0.3, while the multiples are on nearly circular (<e> = 0.04^{+0.03}_{-0.04}) and coplanar (<i> = 1.4^{+0.8}_{-1.1} deg) orbits similar to the Solar System planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation <e>~(1-2)x<i> between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.
The transit method of exoplanet discovery and characterization has enabled numerous breakthroughs in exoplanetary science. These include measurements of planetary radii, mass-radius relationships, stellar obliquities, bulk density constraints on inte rior models, and transmission spectroscopy as a means to study planetary atmospheres. The Transiting Exoplanet Survey Satellite (TESS) has added to the exoplanet inventory by observing a significant fraction of the celestial sphere, including many stars already known to host exoplanets. Here we describe the science extraction from TESS observations of known exoplanet hosts during the primary mission. These include transit detection of known exoplanets, discovery of additional exoplanets, detection of phase signatures and secondary eclipses, transit ephemeris refinement, and asteroseismology as a means to improve stellar and planetary parameters. We provide the statistics of TESS known host observations during Cycle 1 & 2, and present several examples of TESS photometry for known host stars observed with a long baseline. We outline the major discoveries from observations of known hosts during the primary mission. Finally, we describe the case for further observations of known exoplanet hosts during the TESS extended mission and the expected science yield.
The prime Kepler mission detected 34,032 transit-like signals, out of which 8,054 were identified as likely due to astrophysical planet transits or eclipsing binaries. We manually examined 306 of the remaining 25,978 detections, and found six plausib le transiting or eclipsing objects, five of which are plausible planet candidates (PCs), and one stellar companion. One of our new PCs is a possible new second planet in the KOI 4302 system. Another new PC is a possible new planet around the KOI 4246, and when combined with a different possible planet rescued by the False Positive Working Group, we find that KOI 4246 may be a previously unrecognized three-planet system. end{abstract}
We infer the number of planets-per-star as a function of orbital period and planet size using $Kepler$ archival data products with updated stellar properties from the $Gaia$ Data Release 2. Using hierarchical Bayesian modeling and Hamiltonian Monte C arlo, we incorporate planet radius uncertainties into an inhomogeneous Poisson point process model. We demonstrate that this model captures the general features of the outcome of the planet formation and evolution around GK stars, and provides an infrastructure to use the $Kepler$ results to constrain analytic planet distribution models. We report an increased mean and variance in the marginal posterior distributions for the number of planets per $GK$ star when including planet radius measurement uncertainties. We estimate the number of planets-per-$GK$ star between 0.75 and 2.5 $R_{oplus}$ and 50 to 300 day orbital periods to have a $68%$ credible interval of $0.49$ to $0.77$ and a posterior mean of $0.63$. This posterior has a smaller mean and a larger variance than the occurrence rate calculated in this work and in Burke et al. (2015) for the same parameter space using the $Q1-Q16$ (previous $Kepler$ planet candidate and stellar catalog). We attribute the smaller mean to many of the instrumental false positives at longer orbital periods being removed from the $DR25$ catalog. We find that the accuracy and precision of our hierarchical Bayesian model posterior distributions are less sensitive to the total number of planets in the sample, and more so on the characteristics of the catalog completeness and reliability and the span of the planet parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا