ﻻ يوجد ملخص باللغة العربية
The nearly circular (mean eccentricity <e>~0.06) and coplanar (mean mutual inclination <i>~3 deg) orbits of the Solar System planets motivated Kant and Laplace to put forth the hypothesis that planets are formed in disks, which has developed into the widely accepted theory of planet formation. Surprisingly, the first several hundred extrasolar planets (mostly Jovian) discovered using the Radial Velocity (RV) technique are commonly on eccentric orbits (<e> ~ 0.3). This raises a fundamental question: Are the Solar System and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the LAMOST observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), while the other half are multiple-transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with <e>~0.3, while the multiples are on nearly circular (<e> = 0.04^{+0.03}_{-0.04}) and coplanar (<i> = 1.4^{+0.8}_{-1.1} deg) orbits similar to the Solar System planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation <e>~(1-2)x<i> between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.
Doppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASAs Kepler mission enables astr
Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASAs Kepler Space Telescope. Kepler has discovered the majority of known exoplanets, the smallest planets to orbit normal
The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary syst
We infer the number of planets-per-star as a function of orbital period and planet size using $Kepler$ archival data products with updated stellar properties from the $Gaia$ Data Release 2. Using hierarchical Bayesian modeling and Hamiltonian Monte C
We present an extended version of the Constant Time Lag analytical approach for the tidal evolution of circumbinary planets introduced in our previous work. The model is self-consistent, in the sense that all tidal interactions between pairs are comp