ترغب بنشر مسار تعليمي؟ اضغط هنا

Nodeless spin triplet superconducting gap in Sr2RuO4

100   0   0.0 ( 0 )
 نشر من قبل H. Suderow
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on tunneling spectroscopy measurements using a Scanning Tunneling Microscope (STM) on the spin triplet superconductor Sr2RuO4. We find a negligible density of states close to the Fermi level and a fully opened gap with a value of $Delta$=0.28 meV, which disappears at T$_c$ = 1.5 K. $Delta$ is close to the result expected from weak coupling BCS theory ($Delta_0$=1.76kBT$_c$ = 0.229 meV). Odd parity superconductivity is associated with a fully isotropic gap without nodes over a significant part of the Fermi surface.

قيم البحث

اقرأ أيضاً

We have obtained strong experimental evidence for the full determination of the superconducting gap structure in all three bands of the spin-triplet superconductor Sr2RuO4 for the first time. We have extended the measurements of the field-orientation dependent specific heat to include conical field rotations consisting of in-plane azimuthal angle phi-sweeps at various polar angles theta performed down to 0.1 K. Clear 4-fold oscillations of the specific heat and a rapid suppression of it by changing theta are explained only by a compensation from two types of bands with anti-phase gap anisotropies with each other. The results indicate that the active band, responsible for the superconducting instability, is the gamma-band with the lines of gap minima along the [100] directions, and the passive band is the alpha- and beta-bands with the lines of gap minima or zeros along the [110] directions in their induced superconducting gaps. We also demonstrated the scaling of the specific heat for the field in the c-direction, which supports the line-node-like gap structures running along the kz direction.
This review presents a summary and evaluations of the superconducting properties of the layered ruthenate Sr2RuO4 as they are known in the autumn of 2011. This paper appends the main progress that has been made since the preceding review by Mackenzie and Maeno was published in 2003. Here, special focus is placed on the critical evaluation of the spin-triplet, odd-parity pairing scenario applied to Sr2RuO4. After an introduction to superconductors with possible odd-parity pairing, accumulated evidence for the pairing symmetry of Sr2RuO4 is examined. Then, significant recent progress on the theoretical approaches to the superconducting pairing by Coulomb repulsion is reviewed. A section is devoted to some experimental properties of Sr2RuO4 that seem to defy simple explanations in terms of currently available spin-triplet scenario. The next section deals with some new developments using eutectic boundaries and micro-crystals, which reveals novel superconducting phenomena related to chiral edge states, odd-frequency pairing states, and half-fluxoid states. Some of these properties are intimately connected with the properties as a topological superconductor. The article concludes with a summary of knowledge emerged from the study of Sr2RuO4 that are now more widely applied to understand the physics of other unconventional superconductors, as well as with a brief discussion of relatively unexplored but promising areas of ongoing and future studies of Sr2RuO4.
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of stat es reflecting the superconducting gap structure have been resolved for the first time. We also obtained strong evidence of multi-band superconductivity and concluded that the superconducting gap in the active band, responsible for the superconducting instability, is modulated with a minimum along the [100] direction.
High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl$_{0.58}$Rb$_{0.42}$)Fe$_{1.72}$Se$_2$ superconductor with a T$_c$=32 K. The Fermi surface topology co nsists of two electron-like Fermi surface sheets around $Gamma$ point which is distinct from that in all other iron-based compounds reported so far. The Fermi surface around the M point shows a nearly isotropic superconducting gap of $sim$12 meV. The large Fermi surface near the $Gamma$ point also shows a nearly isotropic superconducting gap of $sim$15 meV while no superconducting gap opening is clearly observed for the inner tiny Fermi surface. Our observed new Fermi surface topology and its associated superconducting gap will provide key insights and constraints in understanding superconductivity mechanism in the iron-based superconductors.
Recent nuclear magnetic resonance studies [A. Pustogow {it et al.}, arXiv:1904.00047] have challenged the prevalent chiral triplet pairing scenario proposed for Sr$_2$RuO$_4$. To provide guidance from microscopic theory as to which other pair states might be compatible with the new data, we perform a detailed theoretical study of spin-fluctuation mediated pairing for this compound. We map out the phase diagram as a function of spin-orbit coupling, interaction parameters, and band-structure properties over physically reasonable ranges, comparing when possible with photoemission and inelastic neutron scattering data information. We find that even-parity pseudospin singlet solutions dominate large regions of the phase diagram, but in certain regimes spin-orbit coupling favors a near-nodal odd-parity triplet superconducting state, which is either helical or chiral depending on the proximity of the $gamma$ band to the van Hove points. A surprising near-degeneracy of the nodal $s^prime$- and $d_{x^2-y^2}$-wave solutions leads to the possibility of a near-nodal time-reversal symmetry broken $s^prime+id_{x^2-y^2}$ pair state. Predictions for the temperature dependence of the Knight shift for fields in and out of plane are presented for all states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا