ﻻ يوجد ملخص باللغة العربية
H${acute{e}}$non [8] used an inclined billiard to investigate aspects of chaotic scattering which occur in satellite encounters and in other situations. His model consisted of a piecewise mapping which described the motion of a point particle bouncing elastically on two disks. A one parameter family of orbits, named h-orbits, was obtained by starting the particle at rest from a given height. We obtain an analytical expression for the escape distribution of the h-orbits, which is also compared with results from numerical simulations. Finally, some discussion is made about possible applications of the h-orbits in connection with Hills problem.
In this paper, we examine the level spacing distribution $P(S)$ of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed $P(S)$ is a new type, which is quite different from the
We develop an original apparatus of the granular impact experiment by which the incident angle of the solid projectile and inclination angle of the target granular layer can be systematically varied. Whereas most of the natural cratering events occur
The Greens functions of the two and three-dimensional relativistic Aharonov-Bohm (A-B) systems are given by the path integral approach. In addition the exact radial Greens functions of the spherical A-B quantum billiard system in two and three-dimens
Although a large number of astronomical craters are actually produced by the oblique impacts onto inclined surfaces, most of the laboratory experiments mimicking the impact cratering have been performed by the vertical impact onto a horizontal target
We extended a previous qualitative study of the intermittent behaviour of a chaotical nucleonic system, by adding a few quantitative analyses: of the configuration and kinetic energy spaces, power spectra, Shannon entropies, and Lyapunov exponents. T