ﻻ يوجد ملخص باللغة العربية
Impurity doping like Zn atoms in cuprates were systematically studied to provide important information on the pseudogap phase because this process substantially reduces $T_c$ without effect $T^*$. Despite many important results and advances, the normal phase of these superconductors is still subject of a great debate. We show that the observed Zn-doped data can be reproduced by constructing a nanoscale granular superconductor whose resistivity transition is achieved by Josephson coupling, what provides also a simple interpretation to the pseudogap phase.
We analyse fluctuations about $T_c$ in the specific heat of (Y,Ca)Ba$_2$Cu$_3$O$_{7-delta}$, YBa$_2$Cu$_4$O$_8$ and Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. The mean-field transition temperature, $T_c^{mf}$, in the absence of fluctuations lies well above $
High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc
We calculate superfluid density for a dirty d-wave superconductor. The effects of impurity scattering are treated within the self-consistent t-matrix approximation, in weak-coupling BCS theory. Working from a realistic tight-binding parameterization
We theoretically investigate the vortex state of the cuprate high-temperature superconductors in the presence of magnetic fields. Assuming the recently derived nonlinear $sigma$-model for fluctuations in the pseudogap phase, we find that the vortex c
The angle-resolved photoemission spectroscopy (ARPES) autocorrelation in the electron-doped cuprate superconductors is studied based on the kinetic-energy driven superconducting (SC) mechanism. It is shown that the strong electron correlation induces