ترغب بنشر مسار تعليمي؟ اضغط هنا

A 3-dimensional model of tangential YORP

251   0   0.0 ( 0 )
 نشر من قبل Oleksiy Golubov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tangential YORP, or TYORP, has recently been demonstrated to be an important factor in the evolution of an asteroids rotation state. It is complementary to normal YORP, or NYORP, which used to be considered previously. While NYORP is produced by non-symmetry in the large-scale geometry of an asteroid, TYORP is due to heat conductivity in stones on the surface of the asteroid. Yet to date TYORP has been studied only in a simplified 1-dimensional model, substituting stones by high long walls. This article for the first time considers TYORP in a realistic 3-dimensional model, also including shadowing and self-illumination effects via ray tracing. TYORP is simulated for spherical stones lying on regolith. The model includes only 5 free parameters, and the dependence of the TYORP on each of them is studied. The TYORP torque appears to be smaller than previous estimates from 1-dimensional model, but still comparable to the NYORP torques. These results can be used to estimate TYORP of different asteroids, and also as a basis for more sophisticated models of TYORP.

قيم البحث

اقرأ أيضاً

On 2019 January 5 a streamer associated with the 4--10 km main-belt asteroid (6478)~Gault was detected by the ATLAS sky survey, a rare discovery of activity around a main-belt asteroid. Archival data from ATLAS and Pan-STARRS1 show the trail in early December 2018, but not between 2010 and January 2018. The feature has significantly changed over one month, perfectly matching predictions of pure dust dynamical evolution and changes in observing geometry for a short release of dust around 2018 October 28. Follow-up observations with HST show a second narrow trail corresponding to a brief release of dust on 2018 December 30. Both releases occurred with negligible velocity. We find the dust grains to be fairly large, with power-law size distributions in the $10^{-5} - 10^{-3}$~m range and power-law indices of $sim -1.5$. Three runs of ground-based data find a signature of $sim 2,rm h$ rotation, close to the rotational limit, suggesting that the activity is the result of landslides or reconfigurations after YORP spin-up.
Any population of asteroids, like asteroid families, will disperse in semi-major axis due to the Yarkovsky effect. The amount of drift is modulated by the asteroid spin state evolution which determines the balance between the diurnal and seasonal Yar kovsky force. The asteroids spin state is, in turn, controlled in part by the YORP effect. The otherwise smooth evolution of an asteroid can be abruptly altered by collisions, which can cause impulsive changes in the spin state and can move the asteroid onto a different YORP track. In addition, collisions may also alter the YORP parameters by changing the superficial features and overall shape of the asteroid. Thus, the coupling between YORP and Yarkovsky is also strongly affected by the impact history of each body. To investigate this coupling we developed a statistical code modeling the time evolution of semi--major axis under YORP-Yarkovsky coupling. It includes the contributions of NYORP (normal YORP), TYORP (tangential YORP) and collisions whose effects are deterministically calculated and not added in a statistical way. We find that both collisions and TYORP increase the dispersion of a family in semi-major axis by making the spin axis evolution less smooth and regular. We show that the evolution of a familys structure with time is complex and collisions randomize the YORP evolution. In our test families we do not observe the formation of a YORP-eye in the semi-major axis vs. diameter distribution, even after a long period of time. If present, the YORP-eye might be a relic of an initial ejection velocity pattern of the collisional fragments.
A new model of cosmogenic tritium ($^3$H) production in the atmosphere is presented. The model belongs to the CRAC (Cosmic-Ray Atmospheric Cascade) family and is named as CRAC:3H. It is based on a full Monte-Carlo simulation of the cosmic-ray induced atmospheric cascade using the Geant4 toolkit. The CRAC:3H model is able, for the first time, to compute tritium production at any location and time, for any given energy spectrum of the primary incident cosmic ray particles, explicitly treating, also for the first time, particles heavier than protons. This model provides a useful tool for the use of $^3$H as a tracer of atmospheric and hydrological circulation. A numerical recipe for practical use of the model is appended.
The Upsilon Andromedae system is the first exoplanetary system to have the relative inclination of two planets orbital planes directly measured, and therefore offers our first window into the 3-dimensional configurations of planetary systems. We pres ent, for the first time, full 3-dimensional, dynamically stable configurations for the 3 planets of the system consistent with all observational constraints. While the outer 2 planets, c and d, are inclined by about 30 degrees, the inner planets orbital plane has not been detected. We use N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or about 8 billion orbits of planet b. Planet bs orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict bs mass is in the range 2 - 9 $M_{Jup}$ and has an inclination angle from the sky plane of less than 25 degrees. Combined with brightness variations in the combined star/planet light curve (phase curve), our results imply that planet bs radius is about 1.8 $R_{Jup}$, relatively large for a planet of its age. However, the eccentricity of b in several of our stable solutions reaches values greater than 0.1, generating upwards of $10^{19}$ watts in the interior of the planet via tidal dissipation, possibly inflating the radius to an amount consistent with phase curve observations.
We investigate 3-dimensional flagellar swimming in a fluid with a sparse network of stationary obstacles or fibers. The Brinkman equation is used to model the average fluid flow where a flow-dependent term, including a resistance parameter that is in versely proportional to the permeability, models the resistive effects of the fibers on the fluid. To solve for the local linear and angular velocities that are coupled to the flagellar motion, we extend the method of regularized Brinkmanlets to incorporate a Kirchhoff rod, discretized as point forces and torques along a centerline. Representing a flagellum as a Kirchhoff rod, we investigate emergent waveforms for different preferred strain and twist functions. Since the Kirchhoff rod formulation allows for out-of-plane motion, in addition to studying a preferred planar sine wave configuration, we also study the case with a preferred helical configuration. Our numerical method is validated by comparing results to asymptotic swimming speeds derived for an infinite-length cylinder propagating planar or helical waves. Similar to the asymptotic analysis for both planar and helical bending, we observe that with small amplitude bending, swimming speed is always enhanced relative to the case with no fibers in the fluid (Stokes) as the resistance parameter is increased....
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا