ﻻ يوجد ملخص باللغة العربية
Within the Oseen-Frank theory we derive numerically exact solutions for axisymmetric localized states in chiral liquid crystal layers with homeotropic anchoring. These solutions describe recently observed two-dimensional skyrmions in confinement-frustrated chiral nematics [P. J. Acherman et al. Phys. Rev. E 90, 012505 (2014)]. We stress that these solitonic states arise due to a fundamental stabilization mechanism responsible for the formation of skyrmions in cubic helimagnets and other noncentrosymmetric condensed-matter systems.
A magnetic skyrmion is a topological object that can exist as a solitary embedded in the vast ferromagnetic phase, or coexists with a group of its siblings in various stripy phases as well as skyrmion crystals (SkXs). Isolated skyrmions and skyrmions
Antiferromagnetic skyrmion crystals are magnetic phases predicted to exist in antiferromagnets with Dzyaloshinskii-Moriya interactions. Their spatially periodic noncollinear magnetic texture gives rise to topological bulk magnon bands characterized b
In the present paper, we investigate the polarization properties of the cholesteric liquid crystals (CLCs) with an isotropic/anisotropic defect inside them. Possibilities of amplification of the polarization plane rotation and stabilization of the li
We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review so
The band structure of photons in cholesteric liquid crystals (CLCs) is investigated in the shortwave approximation. The bound states or narrow resonances of photons in the CLC are formed by the extraordinary waves. The explicit expressions for the sp