ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimisation of the pointing stability of laser-wakefield accelerated electron beams

122   0   0.0 ( 0 )
 نشر من قبل Gianluca Sarri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser-wakefield acceleration is a promising technique for the next generation of ultra-compact, high-energy particle accelerators. However, for a meaningful use of laser-driven particle beams it is necessary that they present a high degree of pointing stability in order to be injected into transport lines and further acceleration stages. Here we show a comprehensive experimental study of the main factors limiting the pointing stability of laser-wakefield accelerated electron beams. It is shown that gas-cells provide a much more stable electron generation axis, if compared to gas-jet targets, virtually regardless of the gas density used. A sub-mrad shot-to-shot fluctuation in pointing is measured and a consistent non-zero offset of the electron axis in respect to the laser propagation axis is found to be solely related to a residual angular dispersion introduced by the laser compression system and can be used as a precise diagnostic tool for compression oprtimisation in chirped pulse amplified lasers.



قيم البحث

اقرأ أيضاً

High-flux polarized particle beams are of critical importance for the investigation of spin-dependent processes, such as in searches of physics beyond the Standard Model, as well as for scrutinizing the structure of solids and surfaces in material sc ience. Here we demonstrate that kiloampere polarized electron beams can be produced via laser-wakefield acceleration from a gas target. A simple theoretical model for determining the electron beam polarization is presented and supported with self-consistent three-dimensional particle-in-cell simulations that incorporate the spin dynamics. By appropriately choosing the laser and gas parameters, we show that the depolarization of electrons induced by the laser-wakefield-acceleration process can be as low as 10%. Compared to currently available sources of polarized electron beams, the flux is increased by four orders of magnitude.
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron be am, todays lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We report on the observation of radiation reaction in the collision of an ultra-relativistic electron beam generated by laser wakefield acceleration ($varepsilon > 500$ MeV) with an intense laser pulse ($a_0 > 10$). We measure an energy loss in the post-collision electron spectrum that is correlated with the detected signal of hard photons ($gamma$-rays), consistent with a quantum (stochastic) description of radiation reaction. The generated $gamma$-rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy $varepsilon_{rm crit} > $ 30 MeV.
124 - S. Gode , C. Rodel , K. Zeil 2017
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a $mu$ m-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of $B>$10 MG and $E>$0.1 MV/$mu$m fields with a $mu$m-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length $gtrsim 0.13 lambda_0 sqrt{a_0}$. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multi-purpose applications.
We investigate the generation of twin $gamma$ ray beams in collision of an ultrahigh intensity laser pulse with a laser wakefield accelerated electron beam by using particle-in-cell simulation. We consider the composed target of a homogeneous underde nse preplasma in front of an ultrathin solid foil. The electrons in the preplasma are trapped and accelerated by the wakefield. When the laser pulse is reflected by the thin solid foil, the wakefield accelerated electrons continue to move forward and passing through the foil almost without the influence of the reflected laser pulse and the foil. Consequently, two groups of $gamma$ ray flashes, with tunable time delay and energy, are generated by the wakefield accelerated electron beam interacting with the reflected laser pulse from the foil as well as another counter propagating petawatt laser pulse in the behind the foil. The dependence of the $gamma$ photon emission on the preplasma densities, driving laser polarization and the foil are studied.
145 - C. Labaune 2013
The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. R elaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا