ﻻ يوجد ملخص باللغة العربية
We refine the multifractal formalism for the local dimension of a Gibbs measure $mu$ supported on the attractor $Lambda$ of a conformal iterated functions system on the real line. Namely, for given $alphain mathbb{R}$, we establish the formalism for the Hausdorff dimension of level sets of points $xinLambda$ for which the $mu$-measure of a ball of radius $r_{n}$ centered at $x$ obeys a power law $r_{n}{}^{alpha}$, for a sequence $r_{n}rightarrow0$. This allows us to investigate the Holder regularity of various fractal functions, such as distribution functions and conjugacy maps associated with conformal iterated function systems.
We prove a comprehensive version of the Ruelle-Perron-Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is t
Multifractal analysis has become a powerful signal processing tool that characterizes signals or images via the fluctuations of their pointwise regularity, quantified theoretically by the so-called multifractal spectrum. The practical estimation of t
This paper has been withdrawn by the authors due to an error in the main theorem.
For a large class of irreducible shift spaces $XsubsettA^{Z^d}$, with $tA$ a finite alphabet, and for absolutely summable potentials $Phi$, we prove that equilibrium measures for $Phi$ are weak Gibbs measures. In particular, for $d=1$, the result holds for irreducible sofic shifts.
Let (X,T) be a dynamical system, where X is a compact metric space and T a continuous onto map. For weak Gibbs measures we prove large deviations estimates.