ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck intermediate results. XXXIX. The Planck list of high-redshift source candidates

119   0   0.0 ( 0 )
 نشر من قبل Ludovic Montier
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been applied to select the most luminous cold submm sources with spectral energy distributions peaking between 353 and 857GHz at 5 resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545GHz above 500mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z>2, assuming a dust temperature of 35K and a spectral index of 1.5. First follow-up observations obtained from optical to submm have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies, which are amongst the brightest submm lensed objects (with flux density at 545GHz ranging from 350mJy up to 1Jy) at redshift 2 to 4. However, the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with z>2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, complementary to the Planck Sunyaev-Zeldovich Catalogue; by extending the population of the virialized massive galaxy clusters to a population of sources at z>1.5, the PHZ may contain the progenitors of todays clusters. Hence the PHZ opens a new window on the study of the early ages of structure formation, and the understanding of the intensively star-forming phase at high-z.

قيم البحث

اقرأ أيضاً

[Abridged] We use the Planck all-sky submm and mm maps to search for rare sources distinguished by extreme brightness, a few hundreds of mJy, and their potential for being situated at high redshift. These cold Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353 and 857 GHz. This colour-selection favours galaxies in the redshift range z=2-4, which we consider as cold peaks in the cosmic infrared background (CIB). We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500um sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350um. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z>2.2. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10sigma. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z~2. Under the Td=35K assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4x10^12 Lsun, yielding star formation rates of typically 700 Msun.yr^-1. If the observed overdensities are actual gravitationally-bound structures, the total total star formation rates reaches 7x10^3 Msun.yr^-1. Taken together, these sources show the signatures of high-z (z>$) protoclusters of intensively star-forming galaxies. All these observations confirm the uniqueness of our sample and demonstrate the ability of the all-sky Planck-HFI cold sources to select populations of cosmological and astrophysical interest for structure formation studies.
Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic haze at microwave wavelengths. The haze is a distinct component of diffuse Galactic emi ssion, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray haze or bubbles, indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.
The Andromeda Galaxy (M31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M31 in all of its frequency bands, and has mapped out the dust emission with the High Frequenc y Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M31. We find that dust dominating the longer wavelength emission ($gtrsim 0.3,$mm) is heated by the diffuse stellar population (as traced by 3.6$,mu$m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24$,mu$m emission). We also fit spectral energy distributions (SEDs) for individual 5 pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22$,$K in the nucleus to 14$,$K outside of the 10$,$kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of ($18.2pm1.0$)$,$K with a spectral index of $1.62pm0.11$ (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60$,$GHz, which corresponds to a star formation rate of around $0.12$M$_odot,$yr$^{-1}$. We find a $2.3,sigma$ detection of the presence of spinning dust emission, with a 30$,$GHz amplitude of $0.7pm0.3,$Jy, which is in line with expectations from our Galaxy.
We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit LCDM models with various para meterizations of the reionization history. We obtain a Thomson optical depth tau=0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with only data from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z=7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Dz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z~10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 G Hz have a dust-like spectral energy distribution, which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Plancks three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeePs data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1 per cent of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. The results of the BeeP extension of PCCS2, which are made publicly available via the PLA, will enable the study of the thermal properties of well-defined samples of compact Galactic and extra-galactic dusty sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا