ترغب بنشر مسار تعليمي؟ اضغط هنا

All-in/all-out magnetic domains: X-ray diffraction imaging and magnetic field control

186   0   0.0 ( 0 )
 نشر من قبل Samuel Tardif Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-range non-collinear all-in/all-out magnetic order has been directly observed for the first time in real space in the pyrochlore Cd$_2$Os$_2$O$_7$ using resonant magnetic microdiffraction at the Os L$_3$ edge. Two different antiferromagnetic domains related by time-reversal symmetry could be distinguished and have been mapped within the same single crystal. The two types of domains are akin to magnetic twins and were expected - yet unobserved so far - in the all-in/all-out model. Even though the magnetic domains are antiferromagnetic, we show that their distribution can be controlled using a magnetic field-cooling procedure.



قيم البحث

اقرأ أيضاً

We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed by 0.2 K in an electric field of 30 MV/m, as compared to the unbiased sample. Dielectric measurements show that the transition temperature into the magnetic state associated with ferroelectric order increases by 0.2 K when the sample is biased at 25 MV/m. This electric field control of the magnetic transitions can be qualitatively understood using a mean field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization.
Exotic phases of matter emerge from the interplay between strong electron interactions and non-trivial topology. Owing to their lack of dispersion at the single-particle level, systems harboring flat bands are excellent testbeds for strongly interact ing physics, with twisted bilayer graphene serving as a prime example. On the other hand, existing theoretical models for obtaining flat bands in crystalline materials, such as the line-graph formalism, are often too restrictive for real-life material realizations. Here we present a generic technique for constructing perfectly flat bands from bipartite crystalline lattices. Our prescription encapsulates and generalizes the various flat band models in the literature, being applicable to systems with any orbital content, with or without spin-orbit coupling. Using Topological Quantum Chemistry, we build a complete topological classification in terms of symmetry eigenvalues of all the gapped and gapless flat bands, for all 1651 Magnetic Space Groups. In addition, we derive criteria for the existence of symmetry-protected band touching points between the flat and dispersive bands, and we identify the gapped flat bands as prime candidates for fragile topological phases. Finally, we show that the set of all (gapped and gapless) perfectly flat bands is finitely generated and construct the corresponding bases for all 1651 Shubnikov Space Groups.
The recently discovered magnetization reversal driven solely by a femtosecond laser pulse has been shown to be a promising way to record information at record breaking speeds. Seeking to improve the recording density has raised intriguing fundamental question about the feasibility to combine the ultrafast temporal with sub-wavelength spatial resolution of magnetic recording. Here we report about the first experimental demonstration of sub-diffraction and sub-100 ps all-optical magnetic switching. Using computational methods we reveal the feasibility of sub-diffraction magnetic switching even for an unfocused incoming laser pulse. This effect is achieved via structuring the sample such that the laser pulse experiences a passive wavefront shaping as it couples and propagates inside the magnetic structure. Time-resolved studies with the help of photo-emission electron microscopy clearly reveal that the sub-wavelength switching with the help of the passive wave-front shaping can be pushed into sub-100 ps regime.
149 - Y S Chai , S H Chun , S Y Haam 2010
We show that room temperature resistivity of Ba0.5Sr1.5Zn2Fe12O22 single crystals increases by more than three orders of magnitude upon being subjected to optimized heat treatments. The increase in the resistivity allows the determination of magnetic field (H)-induced ferroelectric phase boundaries up to 310 K through the measurements of dielectric constant at a frequency of 10 MHz. Between 280 and 310 K, the dielectric constant curve shows a peak centered at zero magnetic field and thereafter decreases monotonically up to 0.1 T, exhibiting a magnetodielectric effect of 1.1%. This effect is ascribed to the realization of magnetic field-induced ferroelectricity at an H value of less than 0.1 T near room temperature. Comparison between electric and magnetic phase diagrams in wide temperature- and field-windows suggests that the magnetic field for inducing ferroelectricity has decreased near its helical spin ordering temperature around 315 K due to the reduction of spin anisotropy in Ba0.5Sr1.5Zn2Fe12O22.
176 - S. Valencia , A. Gaupp , W. Gudat 2007
Surface magnetic properties of perovskite manganites have been a recurrent topic during last years since they play a major role in the implementation of magnetoelectronic devices. Magneto-optical techniques, such as X-ray magnetic circular dichroism, turn out to be a very efficient tool to study surface magnetism due to their sensitivity to magnetic and chemical variations across the sample depth. Nevertheless, the application of the sum rules for the determination of the spin magnetic moment might lead to uncertainties as large as 40% in case of Mn ions. To overcome this problem we present an alternative approach consisting of using X-ray magnetic circular dichroism in reflection geometry. Fit of the data by using a computer code based in a 4X4 matrix formalism leads to realistic results. In particular, we show that surface and interface roughness are of major relevance for a proper description of the experimental data and a correct interpretation of the results. By using such an approach we demonstrate the presence of a narrow surface region with strongly depressed magnetic properties in La2/3Ca1/3MnO3 thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا