ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal Model of Stochastic Athermal Systems: Origin of Non-Gaussian Noise

222   0   0.0 ( 0 )
 نشر من قبل Kiyoshi Kanazawa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a wide class of stochastic athermal systems, we derive Langevin-like equations driven by non-Gaussian noise, starting from master equations and developing a new asymptotic expansion. We found an explicit condition whereby the non-Gaussian properties of the athermal noise become dominant for tracer particles associated with both thermal and athermal environments. Furthermore, we derive an inverse formula to infer microscopic properties of the athermal bath from the statistics of the tracer particle. We apply our formulation to a granular motor under viscous friction, and analytically obtain the angular velocity distribution function. Our theory demonstrates that the non-Gaussian Langevin equation is the minimal model of athermal systems.



قيم البحث

اقرأ أيضاً

We introduce a software generator for a class of emph{colored} (self-correlated) and emph{non-Gaussian} noise, whose statistics and spectrum depend upon only two parameters, $q$ and $tau$. Inspired by Tsallis nonextensive formulation of statistical p hysics, this so-called $q$-distribution is a handy source of self-correlated noise for a large variety of applications. The $q$-noise---which tends smoothly for $q=1$ to Ornstein--Uhlenbeck noise with autocorrelation $tau$---is generated via a stochastic differential equation, using the Heun method (a second order Runge--Kutta type integration scheme). The algorithm is implemented as a stand-alone library in texttt{c++}, available as open source in the texttt{Github} repository. The noises statistics can be chosen at will, by varying only parameter $q$: it has compact support for $q<1$ (sub-Gaussian regime) and finite variance up to $q=5/3$ (supra-Gaussian regime). Once $q$ has been fixed, the noises autocorrelation can be tuned up independently by means of parameter $tau$. This software provides a tool for modeling a large variety of real-world noise types, and is suitable to study the effects of correlation and deviations from the normal distribution in systems of stochastic differential equations which may be relevant for a wide variety of technological applications, as well as for the understanding of situations of biological interest. Applications illustrating how the noise statistics affects the response of a variety of nonlinear systems are briefly discussed. In many of these examples, the systems response turns out to be optimal for some $q eq1$.
We investigate the influence of intrinsic noise on stable states of a one-dimensional dynamical system that shows in its deterministic version a saddle-node bifurcation between monostable and bistable behaviour. The system is a modified version of th e Schlogl model, which is a chemical reaction system with only one type of molecule. The strength of the intrinsic noise is varied without changing the deterministic description by introducing bursts in the autocatalytic production step. We study the transitions between monostable and bistable behavior in this system by evaluating the number of maxima of the stationary probability distribution. We find that changing the size of bursts can destroy and even induce saddle-node bifurcations. This means that a bursty production of molecules can qualitatively change the dynamics of a chemical reaction system even when the deterministic description remains unchanged.
83 - Tal Agranov , Guy Bunin 2020
The survival of natural populations may be greatly affected by environmental conditions that vary in space and time. We look at a population residing in two locations (patches) coupled by migration, in which the local conditions fluctuate in time. We report on two findings. First, we find that unlike rare events in many other systems, here the histories leading to a rare extinction event are not dominated by a single path. We develop the appropriate framework, which turns out to be a hybrid of the standard saddle-point method, and the Donsker-Varadhan formalism which treats rare events of atypical averages over a long time. It provides a detailed description of the statistics of histories leading to the rare event. The framework applies to rare events in a broad class of systems driven by non-Gaussian noise. Secondly, applying this framework to the population-dynamics model, we find a novel phase transition in its extinction behavior. Strikingly, a patch which is a sink (where individuals die more than are born), can nonetheless reduce the probability of extinction, even if it normally lowers the populations size and growth rate.
A stochastic process with movement, return, and rest phases is considered in this paper. For the movement phase, the particles move following the dynamics of Gaussian process or ballistic type of Levy walk, and the time of each movement is random. Fo r the return phase, the particles will move back to the origin with a constant velocity or acceleration or under the action of a harmonic force after each movement, so that this phase can also be treated as a non-instantaneous resetting. After each return, a rest with a random time at the origin follows. The asymptotic behaviors of the mean squared displacements with different kinds of movement dynamics, random resting time, and returning are discussed. The stationary distributions are also considered when the process is localized. Besides, the mean first passage time is considered when the dynamic of movement phase is Brownian motion.
Many-body non-equilibrium steady states can be described by a Landau-Ginzburg theory if one allows non-analytic terms in the potential. We substantiate this claim by working out the case of the Ising magnet in contact with a thermal bath and undergoi ng stochastic reheating: It is reset to a paramagnet at random times. By a combination of stochastic field theory and Monte Carlo simulations, we unveil how the usual $varphi^4$ potential is deformed by non-analytic operators of intrinsic non-equilibrium nature. We demonstrate their infrared relevance at low temperatures by a renormalization-group analysis of the non-equilibrium steady state. The equilibrium ferromagnetic fixed point is thus destabilized by stochastic reheating, and we identify the new non-equilibrium fixed point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا