ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaussian Process and Levy Walk under Stochastic Non-instantaneous Resetting and Stochastic Rest

399   0   0.0 ( 0 )
 نشر من قبل Weihua Deng Professor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A stochastic process with movement, return, and rest phases is considered in this paper. For the movement phase, the particles move following the dynamics of Gaussian process or ballistic type of Levy walk, and the time of each movement is random. For the return phase, the particles will move back to the origin with a constant velocity or acceleration or under the action of a harmonic force after each movement, so that this phase can also be treated as a non-instantaneous resetting. After each return, a rest with a random time at the origin follows. The asymptotic behaviors of the mean squared displacements with different kinds of movement dynamics, random resting time, and returning are discussed. The stationary distributions are also considered when the process is localized. Besides, the mean first passage time is considered when the dynamic of movement phase is Brownian motion.



قيم البحث

اقرأ أيضاً

Random walks with stochastic resetting provides a treatable framework to study interesting features about central-place motion. In this work, we introduce non-instantaneous resetting as a two-state model being a combination of an exploring state wher e the walker moves randomly according to a propagator and a returning state where the walker performs a ballistic motion with constant velocity towards the origin. We study the emerging transport properties for two types of reset time probability density functions (PDFs): exponential and Pareto. In the first case, we find the stationary distribution and a general expression for the stationary mean square displacement (MSD) in terms of the propagator. We find that the stationary MSD may increase, decrease or remain constant with the returning velocity. This depends on the moments of the propagator. Regarding the Pareto resetting PDF we also study the stationary distribution and the asymptotic scaling of the MSD for diffusive motion. In this case, we see that the resetting modifies the transport regime, making the overall transport sub-diffusive and even reaching a stationary MSD., i.e., a stochastic localization. This phenomena is also observed in diffusion under instantaneous Pareto resetting. We check the main results with stochastic simulations of the process.
In this Topical Review we consider stochastic processes under resetting, which have attracted a lot of attention in recent years. We begin with the simple example of a diffusive particle whose position is reset randomly in time with a constant rate $ r$, which corresponds to Poissonian resetting, to some fixed point (e.g. its initial position). This simple system already exhibits the main features of interest induced by resetting: (i) the system reaches a nontrivial nonequilibrium stationary state (ii) the mean time for the particle to reach a target is finite and has a minimum, optimal, value as a function of the resetting rate $r$. We then generalise to an arbitrary stochastic process (e.g. Levy flights or fractional Brownian motion) and non-Poissonian resetting (e.g. power-law waiting time distribution for intervals between resetting events). We go on to discuss multiparticle systems as well as extended systems, such as fluctuating interfaces, under resetting. We also consider resetting with memory which implies resetting the process to some randomly selected previous time. Finally we give an overview of recent developments and applications in the field.
Stochastic processes offer a fundamentally different paradigm of dynamics than deterministic processes that students are most familiar with, the most prominent example of the latter being Newtons laws of motion. Here, we discuss in a pedagogical mann er a simple and illustrative example of stochastic processes in the form of a particle undergoing standard Brownian diffusion, with the additional feature of the particle resetting repeatedly and at random times to its initial condition. Over the years, many different variants of this simple setting have been studied, including extensions to many-body interacting systems, all of which serve as illustrations of peculiar static and dynamic features that characterize stochastic dynamics at long times. We will provide in this work a brief overview of this active and rapidly evolving field by considering the arguably simplest example of Brownian diffusion in one dimension. Along the way, we will learn about some of the general techniques that a physicist employs to study stochastic processes.
81 - Pascal Grange 2020
The model of binary aggregation with constant kernel is subjected to stochastic resetting: aggregates of any size explode into monomers at independent stochastic times. These resetting times are Poisson distributed, and the rate of the process is cal led the resetting rate. The master equation yields a Bernoulli-type equation in the generating function of the concentration of aggregates of any size, which can be solved exactly. This resetting prescription leads to a non-equilibrium steady state for the densities of aggregates, which is a function of the size of the aggregate, rescaled by a function of the resetting rate. The steady-state density of aggregates of a given size is maximised if the resetting rate is set to the quotient of the aggregation rate by the size of the aggregate (minus one).
We study a diffusion process on a three-dimensional comb under stochastic resetting. We consider three different types of resetting: global resetting from any point in the comb to the initial position, resetting from a finger to the corresponding bac kbone and resetting from secondary fingers to the main fingers. The transient dynamics along the backbone in all three cases is different due to the different resetting mechanisms, finding a wide range of dynamics for the mean squared displacement. For the particular geometry studied herein, we compute the stationary solution and the mean square displacement and find that the global resetting breaks the transport in the three directions. Regarding the resetting to the backbone, the transport is broken in two directions but it is enhanced in the main axis. Finally, the resetting to the fingers enhances the transport in the backbone and the main fingers but reaches a steady value for the mean squared displacement in the secondary fingers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا