ترغب بنشر مسار تعليمي؟ اضغط هنا

On The Communication Complexity of Linear Algebraic Problems in the Message Passing Model

225   0   0.0 ( 0 )
 نشر من قبل Yi Li
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the communication complexity of linear algebraic problems over finite fields in the multi-player message passing model, proving a number of tight lower bounds. Specifically, for a matrix which is distributed among a number of players, we consider the problem of determining its rank, of computing entries in its inverse, and of solving linear equations. We also consider related problems such as computing the generalized inner product of vectors held on different servers. We give a general framework for reducing these multi-player problems to their two-player counterparts, showing that the randomized $s$-player communication complexity of these problems is at least $s$ times the randomized two-player communication complexity. Provided the problem has a certain amount of algebraic symmetry, which we formally define, we can show the hardest input distribution is a symmetric distribution, and therefore apply a recent multi-player lower bound technique of Phillips et al. Further, we give new two-player lower bounds for a number of these problems. In particular, our optimal lower bound for the two-player version of the matrix rank problem resolves an open question of Sun and Wang. A common feature of our lower bounds is that they apply even to the special threshold promise



قيم البحث

اقرأ أيضاً

We consider the point-to-point message passing model of communication in which there are $k$ processors with individual private inputs, each $n$-bit long. Each processor is located at the node of an underlying undirected graph and has access to priva te random coins. An edge of the graph is a private channel of communication between its endpoints. The processors have to compute a given function of all their inputs by communicating along these channels. While this model has been widely used in distributed computing, strong lower bounds on the amount of communication needed to compute simple functions have just begun to appear. In this work, we prove a tight lower bound of $Omega(kn)$ on the communication needed for computing the Tribes function, when the underlying graph is a star of $k+1$ nodes that has $k$ leaves with inputs and a center with no input. Lower bound on this topology easily implies comparable bounds for others. Our lower bounds are obtained by building upon the recent information theoretic techniques of Braverman et.al (FOCS13) and combining it with the earlier work of Jayram, Kumar and Sivakumar (STOC03). This approach yields information complexity bounds that is of independent interest.
We study the multiparty communication complexity of high dimensional permutations, in the Number On the Forehead (NOF) model. This model is due to Chandra, Furst and Lipton (CFL) who also gave a nontrivial protocol for the Exactly-n problem where thr ee players receive integer inputs and need to decide if their inputs sum to a given integer $n$. There is a considerable body of literature dealing with the same problem, where $(mathbb{N},+)$ is replaced by some other abelian group. Our work can be viewed as a far-reaching extension of this line of work. We show that the known lower bounds for that group-theoretic problem apply to all high dimensional permutations. We introduce new proof techniques that appeal to recent advances in Additive Combinatorics and Ramsey theory. We reveal new and unexpected connections between the NOF communication complexity of high dimensional permutations and a variety of well known and thoroughly studied problems in combinatorics. Previous protocols for Exactly-n all rely on the construction of large sets of integers without a 3-term arithmetic progression. No direct algorithmic protocol was previously known for the problem, and we provide the first such algorithm. This suggests new ways to significantly improve the CFL protocol. Many new open questions are presented throughout.
Rummikub is a tile-based game in which each player starts with a hand of $14$ tiles. A tile has a value and a suit. The players form sets consisting of tiles with the same suit and consecutive values (runs) or tiles with the same value and different suits (groups). The corresponding optimization problem is, given a hand of tiles, to form valid sets such that the score (sum of tile values) is maximized. We first present an algorithm that solves this problem in polynomial time. Next, we analyze the impact on the computational complexity when we generalize over various input parameters. Finally, we attempt to better understand some aspects involved in human play by means of an experiment that considers counting problems related to the number of possible immediately winning hands.
The question if a given partial solution to a problem can be extended reasonably occurs in many algorithmic approaches for optimization problems. For instance, when enumerating minimal dominating sets of a graph $G=(V,E)$, one usually arrives at the problem to decide for a vertex set $U subseteq V$, if there exists a textit{minimal} dominating set $S$ with $Usubseteq S$. We propose a general, partial-order based formulation of such extension problems and study a number of specific problems which can be expressed in this framework. Possibly contradicting intuition, these problems tend to be NP-hard, even for problems where the underlying optimisation problem can be solved in polynomial time. This raises the question of how fixing a partial solution causes this increase in difficulty. In this regard, we study the parameterised complexity of extension problems with respect to parameters related to the partial solution, as well as the optimality of simple exact algorithms under the Exponential-Time Hypothesis. All complexity considerations are also carried out in very restricted scenarios, be it degree restrictions or topological restrictions (planarity) for graph problems or the size of the given partition for the considered extension variant of Bin Packing.
Equality and disjointness are two of the most studied problems in communication complexity. They have been studied for both classical and also quantum communication and for various models and modes of communication. Buhrman et al. [Buh98] proved that the exact quantum communication complexity for a promise version of the equality problem is ${bf O}(log {n})$ while the classical deterministic communication complexity is $n+1$ for two-way communication, which was the first impressively large (exponential) gap between quantum and classical (deterministic and probabilistic) communication complexity. If an error is tolerated, both quantum and probabilistic communication complexities for equality are ${bf O}(log {n})$. However, even if an error is tolerated, the gaps between quantum (probabilistic) and deterministic complexity are not larger than quadratic for the disjointness problem. It is therefore interesting to ask whether there are some promis
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا