ﻻ يوجد ملخص باللغة العربية
We report the results of a 3D particle-in-cell (PIC) simulation carried out to study the early-stage evolution of the shock formed when an unmagnetized relativistic jet interacts with an ambient electron-ion plasma. Full-shock structures associated with the interaction are observed in the ambient frame. When open boundaries are employed in the direction of the jet; the forward shock is seen as a hybrid structure consisting of an electrostatic shock combined with a double layer, while the reverse shock is seen as a double layer. The ambient ions show two distinct features across the forward shock: a population penetrating into the shocked region from the precursor region and an accelerated population escaping from the shocked region into the precursor region. This behavior is a signature of a combination of an electrostatic shock and a double layer. Jet electrons are seen to be electrostatically trapped between the forward and reverse shock structures showing a ring-like distribution in a phase-space plot, while ambient electrons are thermalized and become essentially isotropic in the shocked region. The magnetic energy density grows to a few percent of the jet kinetic energy density at both the forward and the reverse shock transition layers in a rather short time scale. We see little disturbance of the jet ions over this time scale.
The properties of relativistic jets, their interaction with the ambient environment, and particle acceleration due to kinetic instabilities are studied self-consistently with Particle-in-Cell simulations. An important key issue is how a toroidal magn
Pulsars out of their parent SNR directly interact with the ISM producing so called Bow-Shock Pulsar Wind Nebulae, the relativistic equivalents of the heliosphere/heliotail system. These have been directly observed from Radio to X-ray, and are found a
The generation of turbulence at magnetized shocks and its subsequent interaction with the latter is a key question of plasma- and high-energy astrophysics. This paper presents two-dimensional magnetohydrodynamic simulations of a fast shock front inte
Mildly relativistic shocks in magnetized electron-ion plasmas are investigated with 2D kinetic particle-in-cell simulations of unprecedentedly high resolution and large scale for conditions that may be found at internal shocks in blazar cores. Ion-sc
Recent in-situ and remote observations suggest that the transport regime associated with shock accelerated particles may be anomalous {i.e., the Mean Square Displacement (MSD) of such particles scales non-linearly with time}. We use self-consistent,