ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Relativistic MHD Simulations of Pulsar Bow Shock Nebulae

69   0   0.0 ( 0 )
 نشر من قبل Niccolo' Bucciantini Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Bucciantini




اسأل ChatGPT حول البحث

Pulsars out of their parent SNR directly interact with the ISM producing so called Bow-Shock Pulsar Wind Nebulae, the relativistic equivalents of the heliosphere/heliotail system. These have been directly observed from Radio to X-ray, and are found also associated to TeV halos, with a large variety of morphologies. They offer a unique environment where the pulsar wind can be studied by modelling its interaction with the surrounding ambient medium, in a fashion that is different/complementary from the canonical Plerions. These systems have also been suggested as the possible origin of the positron excess detected by AMS and PAMELA, in contrast to dark matter. I will present results from 3D Relativistic MHD simulations of such nebulae. On top of these simulations we computed the expected emission signatures, the properties of high energy particle escape, the role of current sheets in channeling cosmic rays, the level of turbulence and magnetic amplification, and how they depend on the wind structure and magnetisation.



قيم البحث

اقرأ أيضاً

Bow-shock pulsar wind nebulae are a subset of pulsar wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the inte rstellar medium produces a bow-shock and a trail, which are detectable in H$_{alpha}$ emission. Among such bow-shock pulsar wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2-D and 3-D hydrodynamic simulations. The shape of the guitar nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millisecond pulsar J2124-3358.
79 - N. Bucciantini 2018
The detection of bright X-ray features and large TeV halos around old pulsars that have escaped their parent Supernova Remnants and are interacting directly with the ISM, suggest that high energy particles, more likely high energy pairs, can escape f rom these systems, and that this escape if far more complex than a simple diffusive model can predict. Here we present for the first time a detailed analysis of how high energy particles escape from the head of the bow shock. In particular we focus our attention on the role of the magnetic field geometry, and the inclination of the pulsar spin axis with respect to the direction of the pulsar kick velocity. We show that asymmetries in the escape pattern of charged particles are common, and they are strongly energy dependent. More interestingly we show that the flow of particles from bow-shock pulsar wind nebulae is likely to be charge separated, which might have profound consequences on the way such flow interacts with the ISM magnetic field, driving local turbulence.
168 - N. Bucciantini 2010
Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when the pulsar wind is confined by the SNR or the ISM. Recent observations have shown a richness of emission features that has driven a renewed interest in the theoretical model ing of these objects. In recent years a MHD paradigm has been developed, capable of reproducing almost all of the observed properties of PWNe, shedding new light on many old issues. Given that PWNe are perhaps the nearest systems where processes related to relativistic dynamics can be investigated with high accuracy, a reliable model of their behavior is paramount for a correct understanding of high energy astrophysics in general. I will review the present status of MHD models: what are the key ingredients, their successes, and open questions that still need further investigation.
Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the ele ctromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ~10^46 erg are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ~10^15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3-D MHD simulations of relativistic pulsar winds and their associated nebulae.
176 - N. Bucciantini 2018
Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These system s have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا