ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative patterns in drone wars

27   0   0.0 ( 0 )
 نشر من قبل Peter Sheridan Dodds
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Attacks by drones (i.e., unmanned combat air vehicles) continue to generate heated political and ethical debates. Here we examine the quantitative nature of drone attacks, focusing on how their intensity and frequency compare with that of other forms of human conflict. Instead of the power-law distribution found recently for insurgent and terrorist attacks, the severity of attacks is more akin to lognormal and exponential distributions, suggesting that the dynamics underlying drone attacks lie beyond these other forms of human conflict. We find that the pattern in the timing of attacks is consistent with one side having almost complete control, an important if expected result. We show that these novel features can be reproduced and understood using a generative mathematical model in which resource allocation to the dominant side is regulated through a feedback loop.

قيم البحث

اقرأ أيضاً

111 - V.I. Yukalov , D. Sornette 2018
Quantum Decision Theory, advanced earlier by the authors, and illustrated for lotteries with gains, is generalized to the games containing lotteries with gains as well as losses. The mathematical structure of the approach is based on the theory of qu antum measurements, which makes this approach relevant both for the description of decision making of humans and the creation of artificial quantum intelligence. General rules are formulated allowing for the explicit calculation of quantum probabilities representing the fraction of decision makers preferring the considered prospects. This provides a method to quantitatively predict decision-maker choices, including the cases of games with high uncertainty for which the classical expected utility theory fails. The approach is applied to experimental results obtained on a set of lottery gambles with gains and losses. Our predictions, involving no fitting parameters, are in very good agreement with experimental data. The use of quantum decision making in game theory is described. A principal scheme of creating quantum artificial intelligence is suggested.
Despite their playful purpose social media changed the way users access information, debate, and form their opinions. Recent studies, indeed, showed that users online tend to promote their favored narratives and thus to form polarized groups around a common system of beliefs. Confirmation bias helps to account for users decisions about whether to spread content, thus creating informational cascades within identifiable communities. At the same time, aggregation of favored information within those communities reinforces selective exposure and group polarization. Along this path, through a thorough quantitative analysis we approach connectivity patterns over 1.2M of Facebook users engaged with two very conflicting narratives: scientific and conspiracy news. Analyzing such data, we quantitatively investigate the effect of two mechanisms (namely challenge avoidance and reinforcement seeking) behind confirmation bias, one of the major drivers of human behavior in social media. We find that challenge avoidance mechanism triggers the emergence of two distinct and polarized groups of users (i.e., echo chambers) who also tend to be surrounded by friends having similar systems of beliefs. Through a network based approach, we show how the reinforcement seeking mechanism limits the influence of neighbors and primarily drives the selection and diffusion of contents even among like-minded users, thus fostering the formation of highly polarized sub-clusters within the same echo chamber. Finally, we show that polarized users reinforce their preexisting beliefs by leveraging the activity of their like-minded neighbors, and this trend grows with the user engagement suggesting how peer influence acts as a support for reinforcement seeking.
This book is concerned with the various aspects of hierarchical collective behaviour which is manifested by most complex systems in nature. From the many of the possible topics, we plan to present a selection of those that we think are useful from th e point of shedding light from very different directions onto our quite general subject. Our intention is to both present the essential contributions by the existing approaches as well as go significantly beyond the results obtained by traditional methods by applying a more quantitative approach then the common ones (there are many books on qualitative interpretations). In addition to considering hierarchy in systems made of similar kinds of units, we shall concentrate on problems involving either dominance relations or the process of collective decision-making from various viewpoints.
Despite the long history of modelling human mobility, we continue to lack a highly accurate approach with low data requirements for predicting mobility patterns in cities. Here, we present a population-weighted opportunities model without any adjusta ble parameters to capture the underlying driving force accounting for human mobility patterns at the city scale. We use various mobility data collected from a number of cities with different characteristics to demonstrate the predictive power of our model. We find that insofar as the spatial distribution of population is available, our model offers universal prediction of mobility patterns in good agreement with real observations, including distance distribution, destination travel constraints and flux. In contrast, the models that succeed in modelling mobility patterns in countries are not applicable in cities, which suggests that there is a diversity of human mobility at different spatial scales. Our model has potential applications in many fields relevant to mobility behaviour in cities, without relying on previous mobility measurements.
We present preliminary results on the online war surrounding distrust of expertise in medical science -- specifically, the issue of vaccinations. While distrust and misinformation in politics can damage democratic elections, in the medical context it may also endanger lives through missed vaccinations and DIY cancer cures. We find that this online health war has evolved into a highly efficient network insurgency with direct inter-crowd links across countries, continents and cultures. The online anti-vax crowds (referred to as Red) now appear better positioned to groom new recruits (Green) than those supporting established expertise (Blue). We also present preliminary results from a mathematically-grounded, crowd-based analysis of the wars evolution, which offers an explanation for how Red seems to be turning the tide on Blue.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا