ﻻ يوجد ملخص باللغة العربية
Despite their playful purpose social media changed the way users access information, debate, and form their opinions. Recent studies, indeed, showed that users online tend to promote their favored narratives and thus to form polarized groups around a common system of beliefs. Confirmation bias helps to account for users decisions about whether to spread content, thus creating informational cascades within identifiable communities. At the same time, aggregation of favored information within those communities reinforces selective exposure and group polarization. Along this path, through a thorough quantitative analysis we approach connectivity patterns over 1.2M of Facebook users engaged with two very conflicting narratives: scientific and conspiracy news. Analyzing such data, we quantitatively investigate the effect of two mechanisms (namely challenge avoidance and reinforcement seeking) behind confirmation bias, one of the major drivers of human behavior in social media. We find that challenge avoidance mechanism triggers the emergence of two distinct and polarized groups of users (i.e., echo chambers) who also tend to be surrounded by friends having similar systems of beliefs. Through a network based approach, we show how the reinforcement seeking mechanism limits the influence of neighbors and primarily drives the selection and diffusion of contents even among like-minded users, thus fostering the formation of highly polarized sub-clusters within the same echo chamber. Finally, we show that polarized users reinforce their preexisting beliefs by leveraging the activity of their like-minded neighbors, and this trend grows with the user engagement suggesting how peer influence acts as a support for reinforcement seeking.
Recent studies have shown that online users tend to select information adhering to their system of beliefs, ignore information that does not, and join groups - i.e., echo chambers - around a shared narrative. Although a quantitative methodology for t
The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. Despite the enthusiastic rhetoric on the part of some that this process generates collect
Personalized recommendation benefits users in accessing contents of interests effectively. Current research on recommender systems mostly focuses on matching users with proper items based on user interests. However, significant efforts are missing to
Echo chambers may exclude social media users from being exposed to other opinions, therefore, can cause rampant negative effects. Among abundant evidence are the 2016 and 2020 US presidential elections conspiracy theories and polarization, as well as
We propose a geometric growth model for weighted scale-free networks, which is controlled by two tunable parameters. We derive exactly the main characteristics of the networks, which are partially determined by the parameters. Analytical results indi