ترغب بنشر مسار تعليمي؟ اضغط هنا

Recursive patterns in online echo chambers

67   0   0.0 ( 0 )
 نشر من قبل Emanuele Brugnoli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite their playful purpose social media changed the way users access information, debate, and form their opinions. Recent studies, indeed, showed that users online tend to promote their favored narratives and thus to form polarized groups around a common system of beliefs. Confirmation bias helps to account for users decisions about whether to spread content, thus creating informational cascades within identifiable communities. At the same time, aggregation of favored information within those communities reinforces selective exposure and group polarization. Along this path, through a thorough quantitative analysis we approach connectivity patterns over 1.2M of Facebook users engaged with two very conflicting narratives: scientific and conspiracy news. Analyzing such data, we quantitatively investigate the effect of two mechanisms (namely challenge avoidance and reinforcement seeking) behind confirmation bias, one of the major drivers of human behavior in social media. We find that challenge avoidance mechanism triggers the emergence of two distinct and polarized groups of users (i.e., echo chambers) who also tend to be surrounded by friends having similar systems of beliefs. Through a network based approach, we show how the reinforcement seeking mechanism limits the influence of neighbors and primarily drives the selection and diffusion of contents even among like-minded users, thus fostering the formation of highly polarized sub-clusters within the same echo chamber. Finally, we show that polarized users reinforce their preexisting beliefs by leveraging the activity of their like-minded neighbors, and this trend grows with the user engagement suggesting how peer influence acts as a support for reinforcement seeking.



قيم البحث

اقرأ أيضاً

Recent studies have shown that online users tend to select information adhering to their system of beliefs, ignore information that does not, and join groups - i.e., echo chambers - around a shared narrative. Although a quantitative methodology for t heir identification is still missing, the phenomenon of echo chambers is widely debated both at scientific and political level. To shed light on this issue, we introduce an operational definition of echo chambers and perform a massive comparative analysis on more than 1B pieces of contents produced by 1M users on four social media platforms: Facebook, Twitter, Reddit, and Gab. We infer the leaning of users about controversial topics - ranging from vaccines to abortion - and reconstruct their interaction networks by analyzing different features, such as shared links domain, followed pages, follower relationship and commented posts. Our method quantifies the existence of echo-chambers along two main dimensions: homophily in the interaction networks and bias in the information diffusion toward likely-minded peers. We find peculiar differences across social media. Indeed, while Facebook and Twitter present clear-cut echo chambers in all the observed dataset, Reddit and Gab do not. Finally, we test the role of the social media platform on news consumption by comparing Reddit and Facebook. Again, we find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. Despite the enthusiastic rhetoric on the part of some that this process generates collect ive intelligence, the WWW also allows the rapid dissemination of unsubstantiated conspiracy theories that often elicite rapid, large, but naive social responses such as the recent case of Jade Helm 15 -- where a simple military exercise turned out to be perceived as the beginning of the civil war in the US. We study how Facebook users consume information related to two different kinds of narrative: scientific and conspiracy news. We find that although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, the sizes of the spreading cascades differ. Homogeneity appears to be the primary driver for the diffusion of contents, but each echo chamber has its own cascade dynamics. To mimic these dynamics, we introduce a data-driven percolation model on signed networks.
Personalized recommendation benefits users in accessing contents of interests effectively. Current research on recommender systems mostly focuses on matching users with proper items based on user interests. However, significant efforts are missing to understand how the recommendations influence user preferences and behaviors, e.g., if and how recommendations result in textit{echo chambers}. Extensive efforts have been made in examining the phenomenon in online media and social network systems. Meanwhile, there are growing concerns that recommender systems might lead to the self-reinforcing of users interests due to narrowed exposure of items, which may be the potential cause of echo chamber. In this paper, we aim to analyze the echo chamber phenomenon in Alibaba Taobao -- one of the largest e-commerce platforms in the world. Echo chamber means the effect of user interests being reinforced through repeated exposure to similar contents. Based on the definition, we examine the presence of echo chamber in two steps. First, we explore whether user interests have been reinforced. Second, we check whether the reinforcement results from the exposure of similar contents. Our evaluations are enhanced with robust metrics, including cluster validity and statistical significance. Experiments are performed on extensive collections of real-world data consisting of user clicks, purchases, and browse logs from Alibaba Taobao. Evidence suggests the tendency of echo chamber in user click behaviors, while it is relatively mitigated in user purchase behaviors. Insights from the results guide the refinement of recommendation algorithms in real-world e-commerce systems.
Echo chambers may exclude social media users from being exposed to other opinions, therefore, can cause rampant negative effects. Among abundant evidence are the 2016 and 2020 US presidential elections conspiracy theories and polarization, as well as the COVID-19 disinfodemic. To help better detect echo chambers and mitigate its negative effects, this paper explores the mechanisms and attributes of echo chambers in social media. In particular, we first illustrate four primary mechanisms related to three main factors: human psychology, social networks, and automatic systems. We then depict common attributes of echo chambers with a focus on the diffusion of misinformation, spreading of conspiracy theory, creation of social trends, political polarization, and emotional contagion of users. We illustrate each mechanism and attribute in a multi-perspective of sociology, psychology, and social computing with recent case studies. Our analysis suggest an emerging need to detect echo chambers and mitigate their negative effects.
We propose a geometric growth model for weighted scale-free networks, which is controlled by two tunable parameters. We derive exactly the main characteristics of the networks, which are partially determined by the parameters. Analytical results indi cate that the resulting networks have power-law distributions of degree, strength, weight and betweenness, a scale-free behavior for degree correlations, logarithmic small average path length and diameter with network size. The obtained properties are in agreement with empirical data observed in many real-life networks, which shows that the presented model may provide valuable insight into the real systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا